

Modified Hazardous Materials Corridor Study Thomas Creek (Richardson Gap Drive) Shimanek Covered Bridge

Key# 20314

Linn County Road Department Scio, Oregon April 2019

3511 Pacific Blvd SW Albany, OR 97321 Ph. (541) 926-7737 Fax (541) 967-7619 cascade-earth.com

Modified Hazardous Materials Corridor Study Thomas Creek (Richardson Gap Drive) Shimanek Covered Bridge Linn County Road Department (Scio, Oregon) Key# 20314

Prepared For:	Chuck Knoll, PE, Project Engineer Kevin Groom, PE, Project Engineer Linn County Road Department 3010 Ferry Street SW Albany, Oregon 97322
Prepared By:	Cascade Earth Sciences 3511 Pacific Blvd SW Albany, OR 97321 (541) 962-7737
Author(s):	Jessica Penetar, PE, Project Engineer
Reviewed By:	Abe Izen, Principal Engineer
Report Date:	April 1, 2019
Project Number:	2018230024
Submitted By:	

Disclaimer: The contents of this document are confidential to the intended recipient at the location to which it is addressed. The contents may not be changed, edited, and/or deleted. The information contained in this document is only valid on the date indicated on the original project file report retained by CES. By accepting this document, you understand that neither CES nor its parent

Jessica Penetar, PE, Project Engineer

company, Valmont Industries, Inc. (Valmont) accepts any responsibility for liability resulting from unauthorized changes, edits, and/or deletions to the information in this document.

CONTENTS

V
1
1
2 3 3 4 4 5
5 6 6
7 7 8
8
9 9 0
1
1
2
3

FIGURES

Figure 1.	Project Location
Figure 2.	Project Corridor Detail and Soil Sample Locations
Figure 3.	Asbestos Survey

CONTENTS (continued) APPENDICES

Appendix A. Historical Data Appendix B. Site Photographs

Appendix C. Site Reconnaissance Checklist and Field Forms

Appendix D. Bridge Drawings

Appendix E. Laboratory Analytical Data

CES – Albany, OR Doc: 2018230024 Linn County Shimanek Covered Bridge - FINAL

Cascade Earth Sciences (CES) conducted a Modified Hazardous Materials Corridor Study (HMCS) for the Thomas Creek Shimanek Covered Bridge rehabilitation on Richardson Gap Drive, Scio, Oregon (Key #20314); referred to as the Project Corridor. The bridge was construction in 1965 and requires structural rehabilitation on both the superstructure and substructure. The Modified HMCS consisted of surface soil sampling, subsurface soil sampling, and a hazardous materials building survey for asbestos-containing materials and lead-based paint.

The HCMS identified the following potential environmental conditions that could impact the proposed construction:

- Two composite soil samples (SS-02 and SS-03) contained benzo(a)pyrene above the clean fill determination and the Oregon Department of Environmental Quality (DEQ) residential Risk Based Contaminants (RBC) for ingestion, dermal contact, and inhalation. The laboratory reporting limit was above the residential RBC and clean fill determination in soil samples SS-01, SS-04, and SS-05:
- Two composite samples (SS-03 and SS-05) contained arsenic at levels above the DEQ residential RBC for ingestion, dermal contact, and inhalation.
- The bridge was constructed with treated timber pilings under the deck.

Based on these findings, CES recommends the following:

- Soils removed from the Project Corridor will need to be managed per Oregon Administrative Rule 340-093 Solid Waste: General Provisions and Oregon Department of Transportation Directive GE 14-01(D) Management of Surface Soils Removed Within Operational Right of Way. If soil is removed from the right-of-way, it will need to be disposed of at a municipal solid waste landfill or a permitted construction and demolition debris landfill (e.g. Coffin Butte Landfill in Corvallis, Oregon), or in another DEQ approved method. However, if soil will be removed from the Project Corridor in the areas of SS-01, SS-02, and SS-03, additional sampling is recommended to characterize the soil.
- All treated and untreated timbers removed from the bridge may be disposed of at a solid waste landfill permitted by the DEQ to receive this material. The Linn County Road Department has a permit to dispose of treated timbers at the Coffin Butte Landfill located north of Corvallis, Oregon; therefore sampling and analysis of these materials should not be required. The contract specification should allow the contractor to transport and dispose of the timbers at this landfill.

CES - Albany, OR April 2019 | Page iv Doc: 2018230024 Linn County Shimanek Covered Bridge - FINAL

1.0 INTRODUCTION

Cascade Earth Sciences (CES) has conducted this Modified Hazardous Materials Corridor Study (HMCS) for the following (herein referred to as the Project Corridor):

Thomas Creek (Richardson Gap Drive) Shimanek Covered Bridge Key #20314 Bridge No. 637-070 Richardson Gap Drive, Linn County Road Number 637 at Milepost 0.70 Scio, Oregon; Linn County

The HMCS is intended primarily as an approach to identifying potential sources of contamination that could impact the project. Such impacts could affect worker safety, property value, and construction costs. This report provides an overview of potential contamination issues.

Proposed construction activities associated with the Project Corridor include the following:

- The project will rehabilitate the existing covered bridge, which will include structural improvements so that the bridge will support Oregon Legal Loads.
- The siding, roof, and deck systems will be removed from the main span and the remaining truss will be lifted off its foundations and rehabilitated off to the side.
- The approach spans and substructure will be replaced or repaired as required while the truss is being repaired.
- New abutments and piers will be constructed, and new approach spans will be installed.
- Following rehabilitation, the truss will be placed back into position and a new deck system, siding and roof system will be installed.
- A new steel-backed, timber rail will be installed on the bridge and approach roadways.
- The bridge will be re-painted.
- Large cranes and heavy equipment will be required to have access on both ends of the bridge during construction. Staging areas are expected to be located in the existing right of way. However, the staging area may extend to about 30 feet outside of the right of way (60 feet within centerline of the road) for a distance of up to 200 feet of each end of the bridge.

2.0 CORRIDOR DESCRIPTION

The Project Corridor lies on the border of Sections 9 & 10 in Range 1 West, Township 10 South of the Willamette Meridian (Figure 1). This is primarily an agricultural area with some residences, and public and private roadways in Scio, Linn County, Oregon. The Shimanek Covered Bridge was originally constructed in 1965 and 1966.

2.1 Physical Setting

According to the United Stated Geological Service (USGS) 7.5' Scio Quadrangle Map, the Project Corridor is at an elevation of approximately 350 feet above mean sea level (Appendix A). The nearest surface water body is Thomas Creek, which flows in a westerly direction under the Shimanek Covered

CES – Albany, OR Doc: 2018230024 Linn County Shimanek Covered Bridge - FINAL Bridge. In general, the local topography at the Project Corridor is flat. Richardson Gap Drive and Shimanek Bridge Drive in the Project Corridor are elevated from the surrounding areas. Stormwater at the Project Corridor generally flows via ditches adjacent to Richardson Gap Drive and Shimanek Bridge Drive towards Thomas Creek. The Project Corridor is covered by vegetation except for Richardson Gap Drive and Shimanek Bridge Drive which are paved. The roadbeds along the pavement are mostly gravel with sparse vegetation. The Project Corridor is located in the 100-year flood zone.

Based on the local topography and proximity of surface water bodies, local groundwater flow is presumed to be to west along Thomas Creek to the South Santiam River. However, local subsurface geologic and manmade features can affect groundwater flow; therefore, this groundwater flow interpretation is only an estimate based on surface observations. Review of water well records filed with the Oregon Water Resources Department (OWRD) indicate that the depth to groundwater in the Project Corridor is expected to range between 1.5 and 48 feet below ground surface. Seasonal fluctuations may contribute to the depth to groundwater range observed.

3.0 OBSERVATIONS

CES conducted site reconnaissance visits on November 19, 2018 and February 6, 2019. The reconnaissance consisted of systematically traversing the Project Corridor and visually observing adjacent properties from public roadways. Photographs documenting reconnaissance observations are included in Appendix B and the site reconnaissance checklist is provided in Appendix C.

Land use in the Project Corridor is primarily agricultural with public roadways (Photographs 1 through 7). The following table summarizes potential sources of potential environmental concerns identified during the site reconnaissance within the Project Corridor.

Potential Sources of Hazardous Substances	Observed?
Heating oil tanks	No
Aboveground Storage Tanks (ASTs)	No
Underground Storage Tanks (USTs), fill and vent pipes, fuel dispensers	No
Other hazardous substance containers	No
Hazardous waste generation	No
Oil water separators, dry wells or floor/storm drains	No
Septic systems	No
Stains or odors	No
Stressed vegetation	No
Solid waste	Yes
Suspect asbestos-containing materials	Yes
Suspect lead-based paint	Yes
Potential polychlorinated biphenyls (PCBs)-containing equipment	No
Florescent or mercury vapor light bulbs	No
Treated timbers	Yes
Water wells or monitoring wells	No

Specific details regarding potential hazardous material sources are provided below. The locations of these sites are shown on Figure 2.

3.1 Solid Waste

Some solid waste was observed in the Project Corridor, mostly in the stormwater ditches to the sides of the roads. The waste consisted of general refuse, such as food wrappers and bits of paper or plastic. A pile of asphalt chunks was also observed at the northeast corner of the bridge approach (Photograph 8). The observed material is not considered hazardous and as such not an environmental concern for the proposed construction activities.

3.2 Suspect Asbestos- Containing Materials

Asbestos fibers are known or suspected to cause a number of diseases when inhaled or ingested. However, the mere presence of asbestos containing material (ACM) does not mean there is a significant exposure risk. In order for a significant exposure risk to exist, the ACM must be accessible and capable of releasing fibers or disturbed in such a way as to cause the release of fibers (i.e., friable) (e.g., repair or demolition activities). Current regulations do not require the removal of ACM unless an exposure risk is present.

3.2.1 Plan Review

Jessica Penetar, a Certified Asbestos Hazard Emergency Response Act (AHERA) Accredited Inspector (Cert. #IR-18-5549B), requested copies of available plans, elevations and details of the Shimanek Covered Bridge. Available materials that were reviewed included 1965 and 1966 general construction drawings. The review of available drawings for the bridge did not identify materials that could contain asbestos. Copies of the drawings are included in Appendix D.

3.2.2 Asbestos Survey

Ms. Penetar completed the asbestos survey of the bridge on November 19, 2018 and February 6, 2019. The survey included:

- Inspection of possible ACM;
- Completion of the asbestos survey form (Appendix C); and
- Collection of eight bulk samples from accessible locations on and under the bridge for asbestos
 content analysis. These included timber piling caps, rubber between steel and concrete, and
 tar/mastic on steel I-beams.

Samples collected during the survey were placed into plastic bags, sealed and labeled. Sampling tools were cleaned between use to reduce the potential for cross-contamination. All samples were shipped under chain-of-custody protocol to TestAmerica, Inc. in Seattle, Washington for asbestos analysis by polarized light microscopy by Environmental Protection Agency (EPA) Method EPA/600/R-93/116.

The approximate sample locations are shown on Figure 3 and materials sampled are shown in Photographs 9 through 12. Roofing materials appeared to be cedar shakes or metal over wooden rafters. Therefore, no samples were collected from roofing material for asbestos analysis (Photograph 13).

3.2.3 Results

Materials containing greater than 1% asbestos are considered ACM by EPA standards. None of the samples collected during the survey were reported as ACM (Appendix E).

Note that additional ACM may be present on-site in inaccessible or concealed locations. If future renovation/demolition activities make these areas accessible, CES recommends a thorough assessment be conducted of these areas at that time to identify and confirm the presence or absence of additional ACM. Until then, all such material should be treated as presumed ACM in accordance with 29 CFR 1926.1101 and 1910.1001.

ACM associated with utilities was not surveyed and are the responsibility of the utility company. If ACM or other hazardous materials associated with utilities are encountered, the utility company is required to remove the material in accordance with applicable regulations prior to or at commencement of bridge removal and replacement.

3.3 Suspect Lead-Based Paint

Colorimetric lead swab kits were used to qualitatively assess the paint present on the bridge. The paint on the metal railing located on the east side of the north bridge approach was not assessed as it is expected to be assessed during repainting. The following table summarizes the surface areas where the colorimetric swab kits were used and the results.

Surface Area Swabed	Lead Detected
White paint on the railing on the west side of the north approach	No
White paint base coat on the west side railing, under the bridge cover	No
Dark red top coat on the outside of the bridge (Photograph 14)	inconclusive due to color of the paint
Light red base coat on the outside of the bridge (Photograph 14)	inconclusive due to color of the paint
White paint on the trim of the old door on the northwest side	No
White paint on the diagonal cross supports	No
White paint on the metal upset rods	No
White paint on the window casing inside the bridge (Photograph 15)	lead detected

Note that the colorimetric swabs only show the presence of lead in the top coat of paint. While efforts were made to test different coats of paint, some coats of paint may not have been accessible.

One composite sample of paint and wood was collected from window casings inside the bridge and from the old door in an area of red paint. Ms. Penetar, a certified Oregon Health Authority Lead-Based Paint Inspector (#2594), oversaw the sampling effort. A cordless drill and an electric drill powered by a generator (equipped with a drill bit for wood) were used to collect the sample. The wood and paint chips generated from the core drilling into the window casing and the door were collected into a new one-gallon plastic bag. A representative composite sample was collected by drilling into or through the wood at several locations. The paint and wood shavings were transferred to a laboratory supplied 8-ounce jar, labeled, and placed in a cooler with ice. The sample was transported under chain-of-custody protocol to TestAmerica Laboratories in Seattle, Washington.

The sample was analyzed for total cadmium, chromium, and lead using EPA method 6010B. The total metals analyses were used as a screening process to identify the necessity of analyzing the sample with Toxicity Characteristic Leaching Procedure (TCLP). If total lead or chromium was detected in the sample at or above a concentration of 100 milligrams per kilogram (mg/kg), or total cadmium was detected at or above 20 mg/kg, the sample was analyzed to assess whether the composite paint/timber materials exhibited the characteristic of toxicity that could define it as a hazardous waste under federal regulations (40 CFR Part 261).

Results of the wood and paint composite sample are shown in Table 1. Lead was detected at 1.8 mg/kg. Cadmium and chromium were not detected above the laboratory reporting limit. Because none of the compounds were detected above the thresholds discussed above, the samples were not analyzed using TCLP.

3.4 Treated Timbers

The bridge was constructed with treated timber pilings and supports under the bridge deck. Treated timbers can generally be disposed of at Coffin Butte Landfill north of Corvallis, Oregon. The Linn County Road Department has a permit to dispose of treated timbers at the landfill and thus, sampling and analysis of these materials on the bridge is not required. The contract specifications should allow the contractor to transport any treated timbers from the bridge and dispose of the material at this landfill.

4.0 HISTORICAL RECORDS

Historical use information was obtained by CES for the Project Corridor by reviewing historical sources such as city directories, aerial photographs, and historical maps.

4.1 Aerial Photographs

CES reviewed aerial photographs dated 1948 to 2016 obtained from Environmental Data Resources (EDR) to clarify past land uses, as described below. Copies of the aerial photographs are included in Appendix A.

Date	Description
1948	The Project Corridor is a roadway with a bridge over Thomas Creek. The areas next to the creek are heavily vegetated. Richardson Gap Drive and Shimanek Bridge Road are present. The surrounding areas are primarily farmland with a few scattered structures, presumed residences.
1955	The Project Corridor is relatively unchanged from the 1948 photograph. A few additional scattered structures are present in the surrounding areas.
1967	The Project Corridor is relatively unchanged from the 1955 photograph. A few additional scattered structures are present in the surrounding areas and the covered structure on the bridge is visible.
1976	The photograph is blurry. The Project Corridor appears to be relatively unchanged from the 1967 photograph. Some of the structures in the surrounding area do not appear to be present.
1982	The Project Corridor is relatively unchanged from the 1976 photograph. A few additional scattered structures are present in the surrounding areas.
1994	The Project Corridor and surrounding areas are relatively unchanged from the 1982 photograph, with the exception of a few additional scattered structures.

Date	Description
2006	The Project Corridor and surrounding areas are relatively unchanged from the 1994 photograph.
2009	The Project Corridor and surrounding areas are relatively unchanged from the 2006 photograph.
2012	The Project Corridor and surrounding areas are relatively unchanged from the 2009 photograph.
2016	The Project Corridor and surrounding areas are relatively unchanged from the 2012 photograph.

As shown, residential and farming activities were identified in the aerial photograph review from 1948 to 2016.

4.2 Sanborn Fire Insurance Maps

CES requested Sanborn Fire Insurance Maps from EDR to identify past land uses. According to EDR, no coverage records are available for the Project Corridor (Appendix A).

4.3 Historic Topographic Maps

Historic topographic maps of the Project Corridor and surrounding properties were reviewed from the USGS Topo and Historical Topographic Map Collection for the years dating from 1921 to 2014. Historic Topographic Maps are used to identify past land uses, as described below and are included in Appendix A.

Date	Description
1921	The 15-minute Lebanon Quadrangle map is blank.
1922	The 15-minute Lebanon Quadrangle map depicts the Project Corridor with Richardson Gap Drive and Shimanek Bridge Drive. "Schimonek Bridge" is shown over Thomas Creek. A few structures are shown around the Project Corridor.
1924	The 15-minute Lebanon Quadrangle map depicts the Project Corridor and surrounding areas as relatively unchanged from the 1922 map.
1944	The 15-minute Lebanon Quadrangle map depicts the Project Corridor as relatively unchanged from the 1924 map. A few more structures are depicted in the surrounding areas.
1957	The 15-minute Lebanon Quadrangle map depicts the Project Corridor as relatively unchanged from the 1944 map. A few more structures are depicted in the surrounding areas. The bridge over Thomas Creek is labeled as "Schimanek Bridge"
1969	The 15-minute Lebanon Quadrangle map depicts the Project Corridor as relatively unchanged from the 1957 map. Fewer structures are present in the surrounding areas.
1986	The 15-minute Lebanon Quadrangle map depicts the Project Corridor and surrounding areas as relatively unchanged from the 1969 map.
2014	The 15-minute Lebanon Quadrangle map depicts the Project Corridor and surrounding areas as relatively unchanged from the 1986 map. However, structures are no longer shown on the map.

4.4 City Directories

City directories, which list business and resident addresses, can provide additional information regarding historical land use and development of a project corridor and its surrounding area. CES requested city directories from EDR (Appendix A) for Richardson Gap Drive and Shimanek Bridge

Drive. Directories dating from 1992, 1995, 2000, 2005, 2010, and 2014 were reviewed to identify past land uses. A summary of the review is provided below.

In the directories from 1992 to 2014, Boeckner Spreading & Trucking is listed at 38781 Richardson Gap Rd. A trucking company has a potential to include automotive service, which could indicate the potential for hazardous chemicals. However, the location is over one mile away from the Project Corridor and therefore unlikely to have a potential environmental impact.

Borchard Transport, Inc. is listed at 40419 Shimanek Bridge Drive (2010 and 2014) and at 4049 Shimanek Bridge Drive (2005). The address listed in 2005 is assumed to be a misprint in the city directory. A transport company has a potential to include automotive service, which could indicate the potential for hazardous chemicals. The location is approximately one half mile away from the Project Corridor and in the presumed side-gradient direction and therefore is unlikely to have a potential environmental impact.

No additional properties were identified in the city directory review that appear to have the likely potential for environmental contamination.

5.0 ENVIRONMENTAL RECORDS REVIEW

CES obtained primary records from EDR for federal, state, and EDR proprietary historical databases and has summarized pertinent information in the following sections.

5.1 Federal Database Records

CES reviewed available federal records for identified hazardous waste sites using "The EDR Radius MapTM with GeoCheck®" (Appendix A). The following table shows the database search radii set forth along with the total number of sites found for each database searched in accordance with the minimum search distances outlined in the American Society for Testing and Materials (ASTM) Standard E1527-13 (ASTM, 2013).

Federal Database Record	Search Radius	Total Sites Found	On or Adjoining API
National Priority List (NPL)	1 mile	0	NA
Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS)	0.5 mile	0	NA
CERCLIS No Further Remedial Action Planned (NFRAP)	0.5 mile	0	NA
Corrective Action Report (CORRACTS)	1 mile	0	NA
Resource Conservation and Recovery Act Information – Treatment, Storage, Disposal Facilities (RCRA-TSD)	0.5 mile	0	NA
RCRA – Large Quantity Generator	0.25 mile	0	NA
RCRA – Small Quantity Generator	0.25 mile	0	NA
RCRA – Conditionally Exempt Small Quantity Generator	0.25 mile	0	NA
Emergency Response Notification System (ERNS)	Target Property	0	NA
27 Supplemental Federal Databases	Varies	0	NA

As shown, none of the federal databases identified suspect properties in or within the vicinity of the API.

5.2 State and Tribal Databases

CES reviewed available state and tribal records for identified hazardous waste sites using "EDR DataMapTM Corridor Study" (Appendix A). The following table shows the database search radii set forth along with the total number of sites found for each database searched in accordance with the minimum search distances outlined in the ASTM Standard E1527-13 (ASTM, 2013).

State and Tribal Database Record	ASTM Search Radius (Miles)	Total Sites Found	On or Adjoining API
State – Environmental Cleanup Site Information System (ECSI)	1 mile	0	No
Oregon Confirmed Release List and Inventory (OR CRL)	1 mile	0	NA
Solid Waste Facilities List (SWF/LF)	0.5 mile	0	NA
Leaking Underground Storage Tanks Site List (LUST)	0.5 mile	0	No
Underground Storage Tank Database (UST)	0.25 mile	0	No
Aboveground Storage Tank Database (AST)	0.25 mile	0	NA
Oregon Voluntary Cleanup Program Sites (VCP)	0.5 mile	0	NA
Engineering Controls	0.5 mile	0	NA
Institutional Controls	0.5 mile	0	NA
EDR MGP	1 mile	0	NA
EDR Historic Auto	0.125 mile	0	NA
EDR Historic Dry Cleaner	0.125 mile	0	NA
18 Supplemental State/Tribal Databases	Varies	0	NA

As shown, none of the state databases listed facilities within the specified search radii in the EDR Report.

5.3 Unmappable Facilities

Unmappable facilities are environmental risk facilities that EDR cannot map due to inadequate address information but can locate by zip code or city name. The EDR report identified no unmappable facilities for the project area.

6.0 ADDITIONAL RESEARCH

As part of the Hazardous Material Corridor Study, CES conducted additional research typical of an ASTM Phase I Environmental Site Assessment (ESA). The following sections summarize the results of this research.

6.1 Oregon State Fire Marshal's Office

CES reviewed records from the Oregon State Fire Marshal's (OSFM) database for hazardous materials incidents at the Project Corridor and surrounding properties. Based on a search of these records, no reportable incidents have occurred on Richardson Gap Drive or Shimanek Bridge Drive within one mile of the Project Corridor (OSFM, 2018).

7.0 SOIL SAMPLING AND ANALYSIS

As part of the modified HMCS, CES completed surface and subsurface sampling activities in the Project Corridor. CES follows the industry standard field practices for soil sampling. Samples were analyzed by TestAmerica, Seattle. CES personnel collecting samples are certified Occupational Safety and Health (OSHA) Hazardous Waste Operations and Emergency Response (HAZWOPER)-trained (29 Code of Federal Regulations 1910.120(e)). The approximate locations of the soil samples are shown on Figure 2.

The following analytical methods were used:

- Polynuclear aromatic hydrocarbons (PAHs) by EPA method 8270-SIM;
- Resource Conservation and Recovery Act (RCRA) metals by EPA method 6010B;
- Pesticides by EPA method 8081;
- Herbicides by EPA method 8151A;
- Volatile Organic Compounds (VOCs) by EPA method 8260B;
- Polychlorinated Biphenyls (PCBs) by EPA method 8082; and
- Northwest Total Petroleum Hydrocarbons Diesel Range by method NWTPHDx.

The analyses for each sample were selected based on historical use (agriculture) and information provided by Linn County that oil may have been used on the road before it was paved.

7.1 Subsurface Soil Sampling

Soils from as deep as five feet may be excavated during the installation of the new abutments. Composite soil samples were collected to a depth of five feet in conjunction with geotechnical drilling activities performed by Foundation Engineering from November 19 through November 21, 2018. Soil from each boring was composited and placed into laboratory-supplied jars and Terra Core[®] kits. Hollow stem auger and/or mud rotary drilling methods were used and soils extracted with mud rotary contained excess water and/or bentonite.

- Sample SS-01 was collected from below the asphalton the north side of the bridge (Foundation Engineering point BH-1) and analyzed for PAHs, RCRA metals, pesticides, herbicides, VOCs, PCBs and NWTPHDx. Material from this location was very wet and rocky and the Terra Core[®] used for VOC sampling was difficult to fill.
- Sample SS-02 was collected from below the asphalt on the south side of the bridge (Foundation Engineering point BH-2) and analyzed for PAHs, RCRA metals, pesticides, herbicides, VOCs, PCBs and NWTPHDx. Soils from one and a half to two feet below ground surface (bgs) had petroleum odors, and soils from two to five feet bgs contained some bentonite from drilling operations.;
- Sample SS-03 was collected from a grassy area on the north side of Thomas Creek (Foundation Engineering point BH-3) and analyzed for PAHs, RCRA metals, pesticides, and herbicides. These soils were very sticky and mixed with bentonite from drilling operations.

CES – Albany, OR Doc: 2018230024 Linn County Shimanek Covered Bridge - FINAL

7.2 Surface Soil Sampling

Composite roadside surface soil samples were collected on November 19, 2018 with a decontaminated stainless steel hand auger in accordance with the Oregon Department of Transportation (ODOT) Directive GE 14-01(D). However, due to refusal, soils were collected only from the top one-foot. Soils from six locations were composited and placed into laboratory-supplied jars and Terra Core[®] kits. Samples were obtained from the following locations:

- Sample SS-04 was collected from soils along Richardson Gap Drive on the north side of the bridge and analyzed for PAHs, RCRA metals, pesticides, herbicides, VOCs, PCBs and NWTPHDx; and
- Sample SS-05 was collected from soils along Richardson Gap Drive on the south side of the bridge and analyzed for PAHs, RCRA metals, pesticides, herbicides, VOCs, PCBs and NWTPHDx.

7.3 Soil Sampling Results and Discussion

Results of the soil analyses are presented in Table 2. Copies of the laboratory analytical data are provided in Appendix E.

The samples generally contained low levels of metals, heavy oil range petroleum hydrocarbons and PAHs. Low levels of VOCs were detected in SS-02. No diesel range hydrocarbons, pesticides, or herbicides were detected in the samples. Note that due to the bentonite in the samples from the mud rotary drilling, the analytical results in SS-01, SS-02, and SS-03 may not be representative of actual soil conditions.

Benzo(a)pyrene was detected in SS-02 and SS-03 at concentrations above the DEQ residential Risk-Based Concentration (RBC) for ingestion, dermal contact, and inhalation, but below the construction worker RBC. While these compounds were not detected in the other samples, the laboratory reporting limit was above the residential RBC. The concentrations detected of benzo(a)pyrene were above the clean fill determination in the SS-02 and SS-03 samples. Benzo(a)pyrene was not detected in SS-01, SS-04, and SS-05, but the laboratory reporting limits were above the clean fill determinations.

Arsenic was detected at concentrations above the residential RBC for ingestion, dermal contact, and inhalation in SS-03 and SS-05. However, the arsenic concentrations detected were below DEQ background levels and clean fill determinations. While arsenic was not detected in SS-01, SS-02, or SS-04, the laboratory reporting limit was above the residential RBC.

Soils removed from the Project Corridor will need to be managed per Oregon Administrative Rule 340-093 *Solid Waste: General Provisions* and ODOT Directive GE 14-01(D) *Management of Surface Soils Removed Within Operational Right of Way.* If soil is removed from the right-of-way, it will need to be disposed of at a municipal solid waste landfill or a permitted construction and demolition debris landfill (e.g. Coffin Butte Landfill in Corvallis, Oregon), or in another DEQ approved method. However, if soil will be removed from the Project Corridor in the areas of SS-01, SS-02, and SS-03, additional sampling is recommended to characterize the soil.

8.0 CONCLUSIONS

CES conducted this HMCS for the Shimanek Covered Bridge Key No. 20314 in Linn County, Oregon. The HCMS identified the following potential environmental conditions that could impact the proposed construction:

- Two composite soil samples (SS-02 and SS-03) contained benzo(a)pyrene above the clean fill determination and the DEQ residential RBC for ingestion, dermal contact, and inhalation. The laboratory reporting limit was above the residential RBC and clean fill determination in soil samples SS-01, SS-04, and SS-05.
- Two composite samples (SS-03 and SS-05) contained arsenic at levels above the DEQ residential RBC for ingestion, dermal contact, and inhalation.
- The bridge was constructed with treated timber pilings under the deck.

Based on these findings, CES recommends the following:

- Soils removed from the Project Corridor will need to be managed per Oregon Administrative Rule 340-093 *Solid Waste: General Provisions* and ODOT Directive GE 14-01(D) *Management of Surface Soils Removed Within Operational Right of Way.* If soil is removed from the right-of-way, it will need to be disposed of at a municipal solid waste landfill or a permitted construction and demolition debris landfill (e.g. Coffin Butte Landfill in Corvallis, Oregon), or in another DEQ approved method. However, if soil will be removed from the Project Corridor in the areas of SS-01, SS-02, and SS-03, additional sampling is recommended to characterize the soil.
- All treated and untreated timbers removed from the bridge when dismantled can be disposed of
 at a solid waste landfill permitted by the DEQ to receive this material. The Linn County Road
 Department has a permit to dispose of treated timbers at the Coffin Butte Landfill located north
 of Corvallis, Oregon; therefore sampling an analysis of these materials should not be required.
 The contract specification should allow the contractor to transport the timbers to and dispose of
 the material at this landfill.

9.0 LIMITATIONS

This assessment was conducted according to American Association of State Highway and Transportation Officials (AASHTO) criteria for a Corridor Study and does not represent an ASTM Phase I ESA. It is for Linn County's use only and may not be relied upon by any other entity without written permission from an authorized Linn County representative. This report is presented as current at the time of publication; it does not warrant against changes in land use or environmental conditions subsequent to its publication. The conclusions presented in this report are professional opinions based on data described in this report. They are intended only for the purpose, location, and project indicated. This report is not a definitive study of contamination in the Project Corridor and should not be interpreted as such.

Performance of a Corridor Study is intended to reduce but not eliminate uncertainty regarding the existence of environmental conditions. The AASHTO practice is intended primarily as an approach to

identifying potential sources of contamination that could impact a project. Based on the AASHTO guide, this Corridor Study constitutes appropriate inquiry into current and past uses of properties within the Project Corridor and is consistent with good commercial or customary practice. However, no environmental assessment can wholly eliminate uncertainty regarding the potential for environmental conditions in connection with a project. This report is based in part on unverified information supplied to CES by third-party sources. While CES has made efforts to substantiate this third-party information, we cannot guarantee its completeness or accuracy.

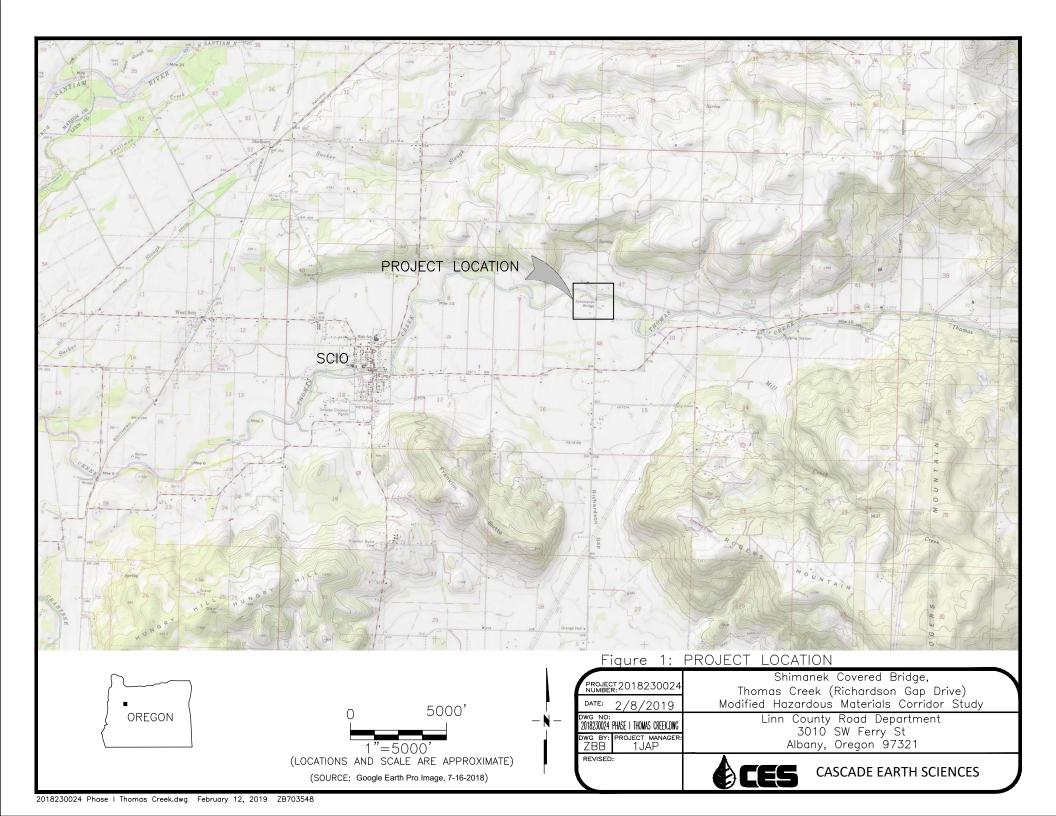
CES staff participating in this Corridor Study are scientists, not attorneys. Therefore, it must be clear to all parties that this report does not offer any legal opinion, representation, or interpretation of environmental laws, rules, regulations, or policies of federal, state, or local government agencies.

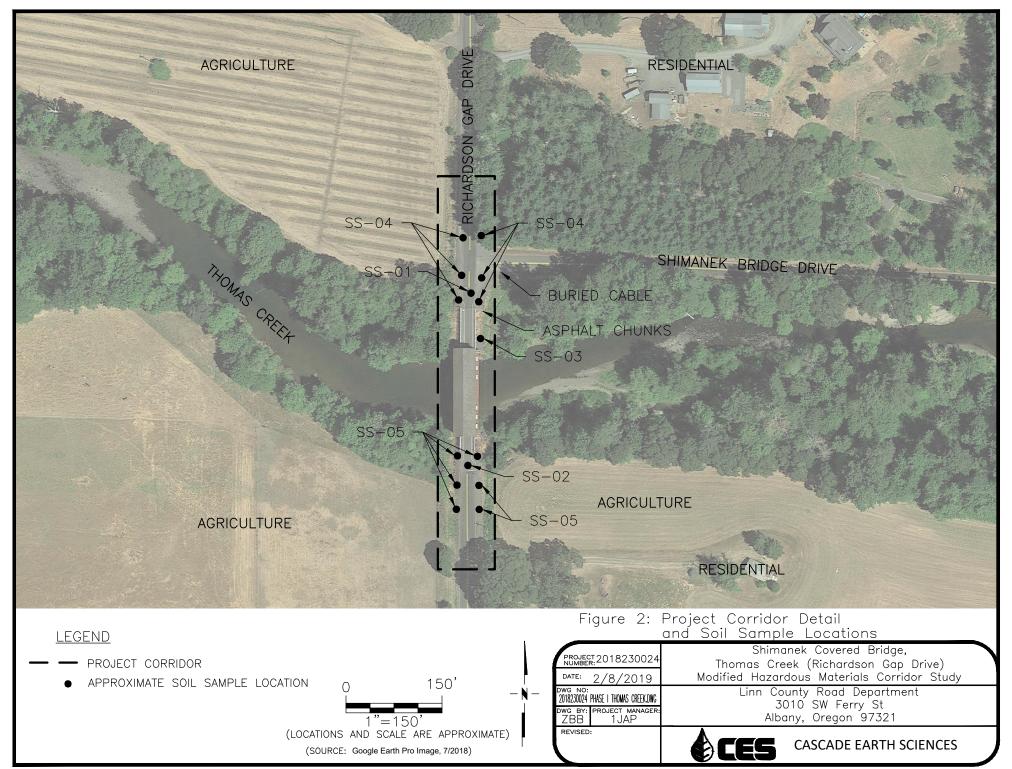
10.0 SIGNATURES

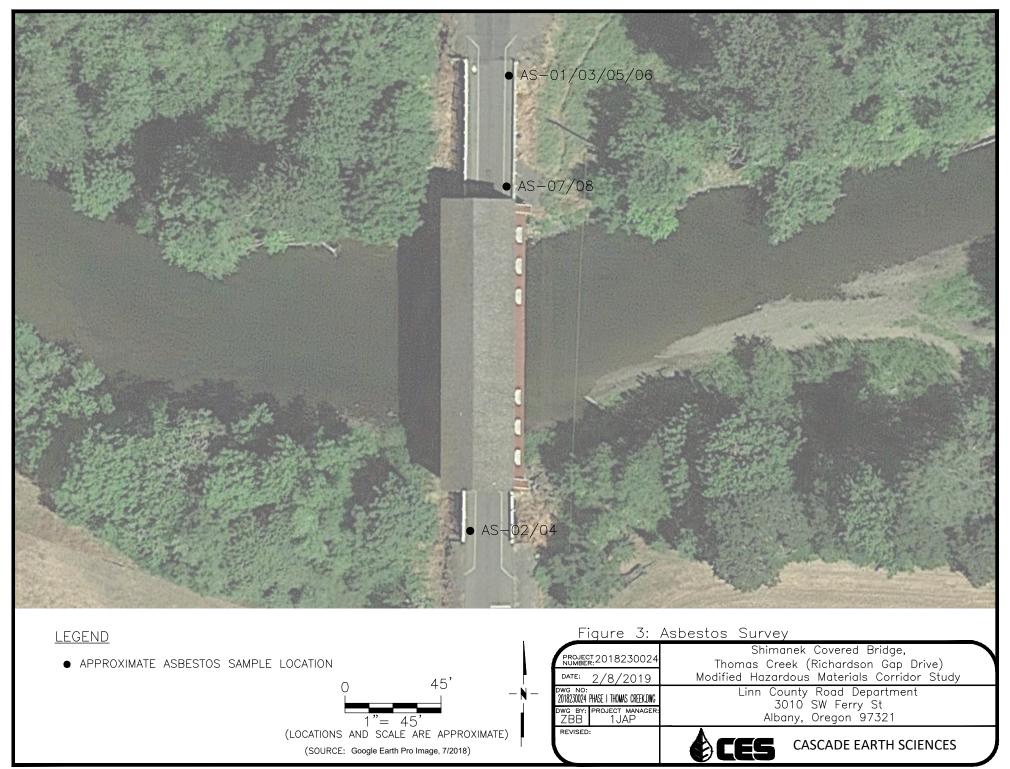
ssica Penetar, PE
April 1, 2019
Date
e Izen, Principal Engineer April 1, 2019
Date

REFERENCES

- ASTM, 2013. Standard Practice for Environmental Site Assessment: Phase I Environmental Site Assessment Process. Standard E1527-13. American Society for Testing and Materials. West Conshohocken, Pennsylvania.
- OSFM, 2018. Community Right to Know (CR2K) Hazardous Substances Incident Search.


 https://www.oregon.gov/osp/SFM/pages/cr2k_incident_database.aspx Oregon State Fire Marshal, Salem, Oregon.


FIGURES


Figure 1. Figure 2.

Project Location Project Corridor Detail and Soil Sample Locations Asbestos Survey

Figure 3.

APPENDICES

Appendix A. Historical Data Site Photographs

Appendix C. Site Reconnaissance Checklist and Field Forms

Appendix D. Bridge Drawings

Appendix E. Laboratory Analytical Data

Appendix A.

Historical Data

Shimanek Covered Bridge

Richardson Gap Drive/Shimanek Bridge Dr Scio, OR 97374

Inquiry Number: 5475386.2s

November 05, 2018

The EDR Radius Map™ Report with GeoCheck®

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

TABLE OF CONTENTS

SECTION	PAGE
Executive Summary	ES1
Overview Map.	2
Detail Map.	3
Map Findings Summary.	4
Map Findings.	8
Orphan Summary	9
Government Records Searched/Data Currency Tracking	GR-1
GEOCHECK ADDENDUM	
Physical Setting Source Addendum.	A-1
Physical Setting Source Summary	A-2
Physical Setting SSURGO Soil Map	A-5
Physical Setting Source Map	A-13
Physical Setting Source Map Findings.	A-15
Physical Setting Source Records Searched	PSGR-

Thank you for your business.
Please contact EDR at 1-800-352-0050
with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2018 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

A search of available environmental records was conducted by Environmental Data Resources, Inc (EDR). The report was designed to assist parties seeking to meet the search requirements of EPA's Standards and Practices for All Appropriate Inquiries (40 CFR Part 312), the ASTM Standard Practice for Environmental Site Assessments (E 1527-13), the ASTM Standard Practice for Environmental Site Assessments for Forestland or Rural Property (E 2247-16), the ASTM Standard Practice for Limited Environmental Due Diligence: Transaction Screen Process (E 1528-14) or custom requirements developed for the evaluation of environmental risk associated with a parcel of real estate.

TARGET PROPERTY INFORMATION

ADDRESS

RICHARDSON GAP DRIVE/SHIMANEK BRIDGE DR SCIO, OR 97374

COORDINATES

Latitude (North): 44.7155880 - 44° 42′ 56.11″ Longitude (West): 122.8045100 - 122° 48′ 16.23″

Universal Tranverse Mercator: Zone 10 UTM X (Meters): 515484.1 UTM Y (Meters): 4951158.5

Elevation: 351 ft. above sea level

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property Map: 6068622 SCIO, OR

Version Date: 2014

AERIAL PHOTOGRAPHY IN THIS REPORT

Portions of Photo from: 20140706 Source: USDA

MAPPED SITES SUMMARY

<u>Target Property Address:</u>
RICHARDSON GAP DRIVE/SHIMANEK BRIDGE DR SCIO, OR 97374

Click on Map ID to see full detail.

MAP RELATIVE DIST (ft. & mi.)

ID SITE NAME ADDRESS DATABASE ACRONYMS ELEVATION DIRECTION

NO MAPPED SITES FOUND

TARGET PROPERTY SEARCH RESULTS

The target property was not listed in any of the databases searched by EDR.

DATABASES WITH NO MAPPED SITES

No mapped sites were found in EDR's search of available ("reasonably ascertainable ") government records either on the target property or within the search radius around the target property for the following databases:

STANDARD ENVIRONMENTAL RECORDS

Federal NPL site list	
	National Priority List Proposed National Priority List Sites Federal Superfund Liens
Federal Delisted NPL sit	e list

Delisted NPL..... National Priority List Deletions

Federal CERCLIS list

FEDERAL FACILITY	Federal Facility Site Information listing
SEMS	Superfund Enterprise Management System

Federal CERCLIS NFRAP site list

SEMS-ARCHIVE	Superfund	Enterprise	Manag	ement S	vstem Archive

Federal RCRA CORRACTS facilities list

CORRACTS Correct	ctive	Action	Report
------------------	-------	--------	--------

Federal RCRA non-CORRACTS TSD facilities list

RCRA-TSDF RC	CRA - Treatment,	Storage and Disposa	ıl
--------------	------------------	---------------------	----

Federal RCRA generators list

RCRA-LQG	RCRA - Large Quantity Generators
RCRA-SQG	RCRA - Small Quantity Generators
RCRA-CESQG	RCRA - Conditionally Exempt Small Quantity Generator

Federal institutional controls / engineering controls registries

LUCIS	Land Use Control Information System
US ENG CONTROLS	Engineering Controls Sites List

US INST CONTROL..... Sites with Institutional Controls

Federal ERNS list

ERNS..... Emergency Response Notification System

State- and tribal - equivalent CERCLIS

ECSI..... Environmental Cleanup Site Information System

CRL..... Confirmed Release List and Inventory

State and tribal landfill and/or solid waste disposal site lists

SWF/LF..... Solid Waste Facilities List

State and tribal leaking storage tank lists

Leaking Underground Storage Tank Database

INDIAN LUST..... Leaking Underground Storage Tanks on Indian Land

State and tribal registered storage tank lists

FEMA UST...... Underground Storage Tank Listing

UST..... Underground Storage Tank Database

State and tribal institutional control / engineering control registries

ENG CONTROLS..... Engineering Controls Recorded at ESCI Sites INST CONTROL Institutional Controls Recorded at ESCI Sites

State and tribal voluntary cleanup sites

INDIAN VCP..... Voluntary Cleanup Priority Listing VCP..... Voluntary Cleanup Program Sites

State and tribal Brownfields sites

BROWNFIELDS..... Brownfields Projects

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS..... A Listing of Brownfields Sites

Local Lists of Landfill / Solid Waste Disposal Sites

SWRCY...... Recycling Facility Location Listing HIST LF..... Old Closed SW Disposal Sites

INDIAN ODI...... Report on the Status of Open Dumps on Indian Lands

DEBRIS REGION 9..... Torres Martinez Reservation Illegal Dump Site Locations

ODI...... Open Dump Inventory

IHS OPEN DUMPS..... Open Dumps on Indian Land

Local Lists of Hazardous waste / Contaminated Sites

US HIST CDL..... Delisted National Clandestine Laboratory Register

AOCONCERN...... Columbia Slough

Local Land Records

LIENS 2..... CERCLA Lien Information

Records of Emergency Release Reports

HMIRS..... Hazardous Materials Information Reporting System

SPILLS......Spill Database
OR HAZMAT.....Hazmat/Incidents

SPILLS 90...... SPILLS 90 data from FirstSearch

Other Ascertainable Records

RCRA NonGen / NLR...... RCRA - Non Generators / No Longer Regulated

FUDS....... Formerly Used Defense Sites DOD...... Department of Defense Sites

SCRD DRYCLEANERS...... State Coalition for Remediation of Drycleaners Listing

US FIN ASSUR_____ Financial Assurance Information

EPA WATCH LIST..... EPA WATCH LIST

TSCA..... Toxic Substances Control Act

TRIS...... Toxic Chemical Release Inventory System

RAATS......RCRA Administrative Action Tracking System

PRP....... Potentially Responsible Parties PADS....... PCB Activity Database System

ICIS...... Integrated Compliance Information System

FTTS______FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide

Act)/TSCA (Toxic Substances Control Act)

COAL ASH EPA..... Coal Combustion Residues Surface Impoundments List

PCB TRANSFORMER...... PCB Transformer Registration Database

RADINFO...... Radiation Information Database

HIST FTTS..... FIFRA/TSCA Tracking System Administrative Case Listing

DOT OPS..... Incident and Accident Data

CONSENT...... Superfund (CERCLA) Consent Decrees

INDIAN RESERV.....Indian Reservations

FUSRAP..... Formerly Utilized Sites Remedial Action Program

UMTRA..... Uranium Mill Tailings Sites

LEAD SMELTERS..... Lead Smelter Sites

US AIRS..... Aerometric Information Retrieval System Facility Subsystem

US MINES Master Index File

ABANDONED MINES..... Abandoned Mines

FINDS......Facility Index System/Facility Registry System

UXO...... Unexploded Ordnance Sites

ECHO...... Enforcement & Compliance History Information DOCKET HWC...... Hazardous Waste Compliance Docket Listing

FUELS PROGRAM..... EPA Fuels Program Registered Listing

AIRS...... Oregon Title V Facility Listing COAL ASH..... Coal Ash Disposal Sites Listing

DRYCLEANERS...... Drycleaning Facilities
Enforcement Action Listing

MANIFEST...... Manifest Information

NPDES...... Wastewater Permits Database

UIC...... Underground Injection Control Program Database

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records

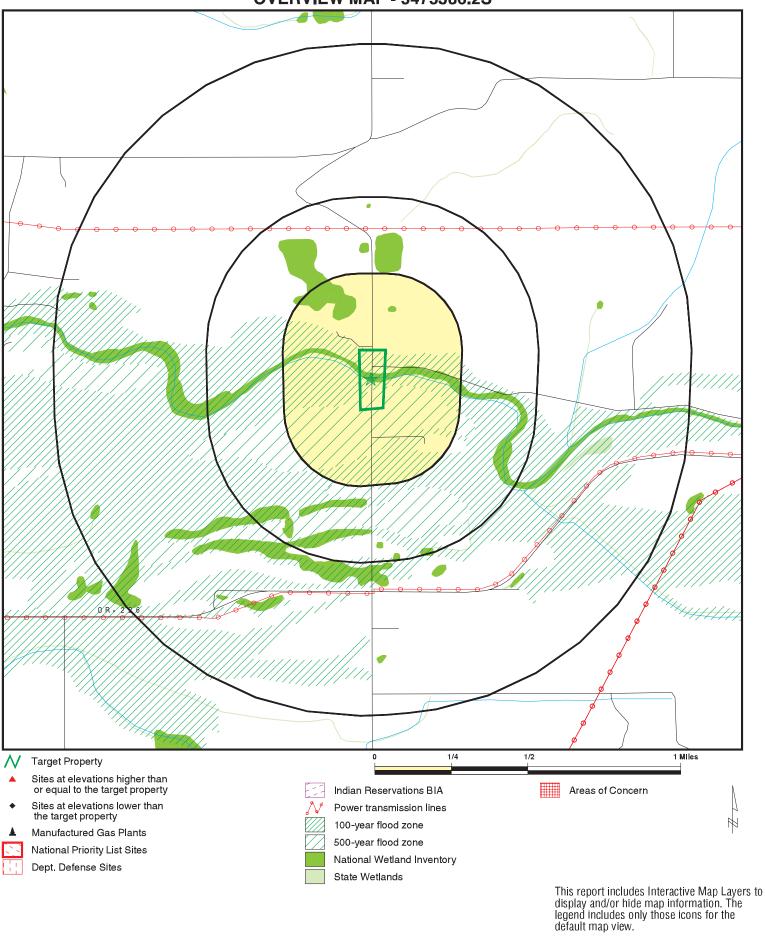
EDR RECOVERED GOVERNMENT ARCHIVES

Exclusive Recovered Govt. Archives

RGA HWS______ Recovered Government Archive State Hazardous Waste Facilities List

RGA LF...... Recovered Government Archive Solid Waste Facilities List

RGA LUST...... Recovered Government Archive Leaking Underground Storage Tank


SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were not identified.

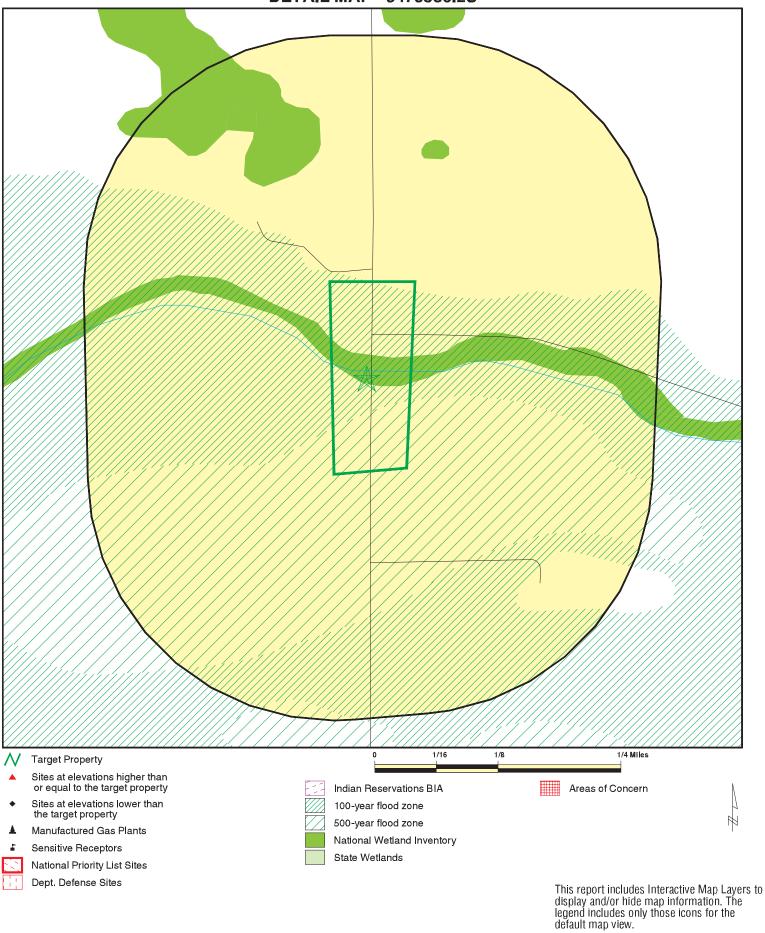
Unmappable (orphan) sites are not considered in the foregoing analysis.

There were no unmapped sites in this report.

OVERVIEW MAP - 5475386.2S

SITE NAME: Shimanek Covered Bridge

ADDRESS: Richardson Gap Drive/Shimanek Bridge Dr


Scio OR 97374

LAT/LONG: 44.715588 / 122.80451 CLIENT: Cascade Earth S CONTACT: Jessica Penetar Cascade Earth Sciences

INQUIRY #: 5475386.2s

DATE: November 05, 2018 2:54 pm

DETAIL MAP - 5475386.2S

SITE NAME: Shimanek Covered Bridge
ADDRESS: Richardson Gap Drive/Shimanek Bridge Dr

CLIENT: Cascade Earth Sciences
CONTACT: Jessica Penetar

Scio OR 97374 LAT/LONG: 44.715588 / 122.80451 INQUIRY #: 5475386.2s DATE: November 05, 2018 2:56 pm

MAP FINDINGS SUMMARY

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
STANDARD ENVIRONMENT	TAL RECORDS							
Federal NPL site list								
NPL Proposed NPL NPL LIENS	1.000 1.000 0.001		0 0 0	0 0 NR	0 0 NR	0 0 NR	NR NR NR	0 0 0
Federal Delisted NPL sit	te list							
Delisted NPL	1.000		0	0	0	0	NR	0
Federal CERCLIS list								
FEDERAL FACILITY SEMS	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
Federal CERCLIS NFRA	P site list							
SEMS-ARCHIVE	0.500		0	0	0	NR	NR	0
Federal RCRA CORRAC	TS facilities lis	t						
CORRACTS	1.000		0	0	0	0	NR	0
Federal RCRA non-COR	RACTS TSD fac	cilities list						
RCRA-TSDF	0.500		0	0	0	NR	NR	0
Federal RCRA generator	rs list							
RCRA-LQG RCRA-SQG RCRA-CESQG	0.250 0.250 0.250		0 0 0	0 0 0	NR NR NR	NR NR NR	NR NR NR	0 0 0
Federal institutional controls / engineering controls registries								
LUCIS US ENG CONTROLS US INST CONTROL	0.500 0.500 0.500		0 0 0	0 0 0	0 0 0	NR NR NR	NR NR NR	0 0 0
Federal ERNS list								
ERNS	0.001		0	NR	NR	NR	NR	0
State- and tribal - equiva	alent CERCLIS							
ECSI CRL	1.000 1.000		0 0	0 0	0 0	0 0	NR NR	0 0
State and tribal landfill a solid waste disposal site								
SWF/LF	0.500		0	0	0	NR	NR	0
State and tribal leaking	storage tank lis	sts						
LUST INDIAN LUST	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
State and tribal registere	ed storage tank	lists						
FEMA UST	0.250		0	0	NR	NR	NR	0

MAP FINDINGS SUMMARY

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
UST AST INDIAN UST	0.250 0.250 0.250		0 0 0	0 0 0	NR NR NR	NR NR NR	NR NR NR	0 0 0
State and tribal institutional control / engineering control registries								
ENG CONTROLS INST CONTROL	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
State and tribal voluntary	cleanup site	s						
INDIAN VCP VCP	0.500 0.500		0 0	0 0	0 0	NR NR	NR NR	0 0
State and tribal Brownfie	lds sites							
BROWNFIELDS	0.500		0	0	0	NR	NR	0
ADDITIONAL ENVIRONMEN	TAL RECORDS							
Local Brownfield lists								
US BROWNFIELDS	0.500		0	0	0	NR	NR	0
Local Lists of Landfill / Solid Waste Disposal Sites								
SWRCY HIST LF INDIAN ODI DEBRIS REGION 9 ODI IHS OPEN DUMPS	0.500 0.500 0.500 0.500 0.500 0.500		0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	NR NR NR NR NR	NR NR NR NR NR	0 0 0 0 0
Local Lists of Hazardous waste / Contaminated Sites								
US HIST CDL AOCONCERN CDL US CDL	0.001 1.000 0.001 0.001		0 0 0 0	NR 0 NR NR	NR 0 NR NR	NR 0 NR NR	NR NR NR NR	0 0 0 0
Local Land Records								
LIENS 2	0.001		0	NR	NR	NR	NR	0
Records of Emergency Release Reports								
HMIRS SPILLS OR HAZMAT SPILLS 90	0.001 0.001 0.001 0.001		0 0 0 0	NR NR NR NR	NR NR NR NR	NR NR NR NR	NR NR NR NR	0 0 0 0
Other Ascertainable Records								
RCRA NonGen / NLR FUDS DOD	0.250 1.000 1.000		0 0 0	0 0 0	NR 0 0	NR 0 0	NR NR NR	0 0 0

MAP FINDINGS SUMMARY

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
SCRD DRYCLEANERS	0.500		0	0	0	NR	NR	0
US FIN ASSUR	0.001		0	NR	NR	NR	NR	0
EPA WATCH LIST	0.001		0	NR	NR	NR	NR	0
2020 COR ACTION	0.250		0	0	NR	NR	NR	0
TSCA	0.001		0	NR	NR	NR	NR	0
TRIS	0.001		0	NR	NR	NR	NR	0
SSTS	0.001		0	NR	NR	NR	NR	0
ROD	1.000		0	0	0	0	NR	0
RMP	0.001		0	NR	NR	NR	NR	0
RAATS	0.001		0	NR	NR	NR	NR	0
PRP	0.001		0	NR	NR	NR	NR	0
PADS	0.001		0	NR	NR	NR	NR	0
ICIS	0.001		0	NR	NR	NR	NR	0
FTTS	0.001		0	NR	NR	NR	NR	0
MLTS	0.001		0	NR	NR	NR	NR	0
COAL ASH DOE	0.001		0	NR	NR	NR	NR	0
COAL ASH EPA	0.500		0	0	0	NR	NR	0
PCB TRANSFORMER	0.001		0	NR	NR	NR	NR	0
RADINFO	0.001		0	NR	NR	NR	NR	0
HIST FTTS	0.001		0	NR	NR	NR	NR	0
DOT OPS	0.001		0	NR	NR	NR	NR	0
CONSENT	1.000		0	0	0	0	NR	0
INDIAN RESERV	0.001		0	NR	NR	NR	NR	0
FUSRAP	1.000		0	0	0	0	NR	0
UMTRA	0.500		0	0	0	NR	NR	0
LEAD SMELTERS	0.001		0	NR	NR	NR	NR	0
US AIRS	0.001		0	NR	NR	NR	NR	0
US MINES	0.250		0	0	NR	NR	NR	0
ABANDONED MINES	0.001		0	NR	NR	NR	NR	0
FINDS	0.001		0	NR	NR	NR	NR	0
UXO	1.000		0	0	0	0	NR	0
ECHO	0.001		0	NR	NR	NR	NR	0
DOCKET HWC	0.001		0	NR	NR	NR	NR	0
FUELS PROGRAM	0.250		0	0	NR	NR	NR	0
AIRS	0.001		0	NR	NR	NR	NR	0
COAL ASH	0.500		0	0	0	NR	NR	0
DRYCLEANERS	0.250		0	0	NR	NR	NR	0
Enforcement	0.001		0	NR	NR	NR	NR	0
Financial Assurance	0.001		0	NR	NR	NR	NR	0
HSIS	0.001		0	NR	NR	NR	NR	0
MANIFEST	0.250		0	0	NR	NR	NR	0
NPDES	0.001		0	NR	NR	NR	NR	0
UIC	0.001		0	NR	NR	NR	NR	0
EDR HIGH RISK HISTORICAL RECORDS								
EDR Exclusive Records								
EDR MGP	1.000		0	0	0	0	NR	0
EDR Hist Auto	0.125		0	NR	NR	NR	NR	0
EDR Hist Cleaner	0.125		0	NR	NR	NR	NR	0
251(Thot Glodilo)	0.120		U	1413	1413	1411	1411	J

MAP FINDINGS SUMMARY

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
EDR RECOVERED GOVERNMENT ARCHIVES								
Exclusive Recovere	ed Govt. Archives							
RGA HWS	0.001		0	NR	NR	NR	NR	0
RGA LF	0.001		0	NR	NR	NR	NR	0
RGA LUST	0.001		0	NR	NR	NR	NR	0
- Totals		0	0	0	0	0	0	0

NOTES:

TP = Target Property

NR = Not Requested at this Search Distance

Sites may be listed in more than one database

Map ID		MAP FINDINGS		
Direction			ı	EDD 10 11 1
Distance				EDR ID Number
Elevation	Site		Database(s)	EPA ID Number

NO SITES FOUND

Count: 0 records. ORPHAN SUMMARY

City EDR ID Site Name Site Address Zip Database(s)

NO SITES FOUND

To maintain currency of the following federal and state databases, EDR contacts the appropriate governmental agency on a monthly or quarterly basis, as required.

Number of Days to Update: Provides confirmation that EDR is reporting records that have been updated within 90 days from the date the government agency made the information available to the public.

STANDARD ENVIRONMENTAL RECORDS

Federal NPL site list

NPL: National Priority List

National Priorities List (Superfund). The NPL is a subset of CERCLIS and identifies over 1,200 sites for priority cleanup under the Superfund Program. NPL sites may encompass relatively large areas. As such, EDR provides polygon coverage for over 1,000 NPL site boundaries produced by EPA's Environmental Photographic Interpretation Center (EPIC) and regional EPA offices.

Date of Government Version: 07/17/2018 Source: EPA Date Data Arrived at EDR: 08/09/2018 Telephone: N/A

Last EDR Contact: 10/04/2018 Date Made Active in Reports: 09/07/2018

Number of Days to Update: 29 Next Scheduled EDR Contact: 01/14/2019 Data Release Frequency: Quarterly

NPL Site Boundaries

EPA's Environmental Photographic Interpretation Center (EPIC)

Telephone: 202-564-7333

EPA Region 1 EPA Region 6

Telephone 617-918-1143 Telephone: 214-655-6659

EPA Region 3 EPA Region 7

Telephone 215-814-5418 Telephone: 913-551-7247

EPA Region 4 **EPA Region 8**

Telephone 404-562-8033 Telephone: 303-312-6774

EPA Region 5 EPA Region 9

Telephone 312-886-6686 Telephone: 415-947-4246

EPA Region 10

Telephone 206-553-8665

Proposed NPL: Proposed National Priority List Sites

A site that has been proposed for listing on the National Priorities List through the issuance of a proposed rule in the Federal Register. EPA then accepts public comments on the site, responds to the comments, and places on the NPL those sites that continue to meet the requirements for listing.

Date of Government Version: 07/17/2018 Date Data Arrived at EDR: 08/09/2018

Date Made Active in Reports: 09/07/2018

Number of Days to Update: 29

Source: EPA Telephone: N/A

Last EDR Contact: 10/04/2018

Next Scheduled EDR Contact: 01/14/2019 Data Release Frequency: Quarterly

NPL LIENS: Federal Superfund Liens

Federal Superfund Liens. Under the authority granted the USEPA by CERCLA of 1980, the USEPA has the authority to file liens against real property in order to recover remedial action expenditures or when the property owner received notification of potential liability. USEPA compiles a listing of filed notices of Superfund Liens.

Date of Government Version: 10/15/1991 Date Data Arrived at EDR: 02/02/1994 Date Made Active in Reports: 03/30/1994

Number of Days to Update: 56

Source: EPA

Telephone: 202-564-4267 Last EDR Contact: 08/15/2011

Next Scheduled EDR Contact: 11/28/2011 Data Release Frequency: No Update Planned

Federal Delisted NPL site list

Delisted NPL: National Priority List Deletions

The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) establishes the criteria that the EPA uses to delete sites from the NPL. In accordance with 40 CFR 300.425.(e), sites may be deleted from the NPL where no further response is appropriate.

Date of Government Version: 07/17/2018 Date Data Arrived at EDR: 08/09/2018 Date Made Active in Reports: 09/07/2018

Number of Days to Update: 29

Source: EPA Telephone: N/A

Last EDR Contact: 10/04/2018

Next Scheduled EDR Contact: 01/14/2019 Data Release Frequency: Quarterly

Federal CERCLIS list

FEDERAL FACILITY: Federal Facility Site Information listing

A listing of National Priority List (NPL) and Base Realignment and Closure (BRAC) sites found in the Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) Database where EPA Federal Facilities Restoration and Reuse Office is involved in cleanup activities.

Date of Government Version: 11/07/2016 Date Data Arrived at EDR: 01/05/2017 Date Made Active in Reports: 04/07/2017

Number of Days to Update: 92

Source: Environmental Protection Agency Telephone: 703-603-8704

Last EDR Contact: 07/06/2018 Next Scheduled EDR Contact: 10/15/2018

Data Release Frequency: Varies

SEMS: Superfund Enterprise Management System

SEMS (Superfund Enterprise Management System) tracks hazardous waste sites, potentially hazardous waste sites, and remedial activities performed in support of EPA's Superfund Program across the United States. The list was formerly know as CERCLIS, renamed to SEMS by the EPA in 2015. The list contains data on potentially hazardous waste sites that have been reported to the USEPA by states, municipalities, private companies and private persons, pursuant to Section 103 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This dataset also contains sites which are either proposed to or on the National Priorities List (NPL) and the sites which are in the screening and assessment phase for possible inclusion on the NPL.

Date of Government Version: 07/17/2018 Date Data Arrived at EDR: 08/09/2018 Date Made Active in Reports: 09/07/2018

Number of Days to Update: 29

Source: EPA Telephone: 800-424-9346 Last EDR Contact: 10/04/2018

Next Scheduled EDR Contact: 01/28/2019 Data Release Frequency: Quarterly

Federal CERCLIS NFRAP site list

SEMS-ARCHIVE: Superfund Enterprise Management System Archive

SEMS-ARCHIVE (Superfund Enterprise Management System Archive) tracks sites that have no further interest under the Federal Superfund Program based on available information. The list was formerly known as the CERCLIS-NFRAP, renamed to SEMS ARCHIVE by the EPA in 2015. EPA may perform a minimal level of assessment work at a site while it is archived if site conditions change and/or new information becomes available. Archived sites have been removed and archived from the inventory of SEMS sites. Archived status indicates that, to the best of EPA's knowledge, assessment at a site has been completed and that EPA has determined no further steps will be taken to list the site on the National Priorities List (NPL), unless information indicates this decision was not appropriate or other considerations require a recommendation for listing at a later time. The decision does not necessarily mean that there is no hazard associated with a given site; it only means that based upon available information, the location is not judged to be potential NPL site.

Date of Government Version: 07/17/2018 Date Data Arrived at EDR: 08/09/2018 Date Made Active in Reports: 09/07/2018

Number of Days to Update: 29

Source: EPA

Telephone: 800-424-9346 Last EDR Contact: 10/04/2018

Next Scheduled EDR Contact: 01/28/2019 Data Release Frequency: Quarterly

Federal RCRA CORRACTS facilities list

CORRACTS: Corrective Action Report

CORRACTS identifies hazardous waste handlers with RCRA corrective action activity.

Date of Government Version: 03/01/2018 Date Data Arrived at EDR: 03/28/2018 Date Made Active in Reports: 06/22/2018

Number of Days to Update: 86

Source: EPA

Telephone: 800-424-9346 Last EDR Contact: 09/19/2018

Next Scheduled EDR Contact: 01/07/2019 Data Release Frequency: Quarterly

Federal RCRA non-CORRACTS TSD facilities list

RCRA-TSDF: RCRA - Treatment, Storage and Disposal

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Transporters are individuals or entities that move hazardous waste from the generator offsite to a facility that can recycle, treat, store, or dispose of the waste. TSDFs treat, store, or dispose of the waste.

Date of Government Version: 03/01/2018 Date Data Arrived at EDR: 03/28/2018 Date Made Active in Reports: 06/22/2018

Number of Days to Update: 86

Source: Environmental Protection Agency

Telephone: (206) 553-1200 Last EDR Contact: 09/19/2018

Next Scheduled EDR Contact: 01/07/2019 Data Release Frequency: Quarterly

Federal RCRA generators list

RCRA-LQG: RCRA - Large Quantity Generators

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Large quantity generators (LQGs) generate over 1,000 kilograms (kg) of hazardous waste, or over 1 kg of acutely hazardous waste per month.

Date of Government Version: 03/01/2018 Date Data Arrived at EDR: 03/28/2018 Date Made Active in Reports: 06/22/2018

Number of Days to Update: 86

Source: Environmental Protection Agency Telephone: (206) 553-1200

Last EDR Contact: 09/19/2018

Next Scheduled EDR Contact: 01/07/2019 Data Release Frequency: Quarterly

RCRA-SQG: RCRA - Small Quantity Generators

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Small quantity generators (SQGs) generate between 100 kg and 1,000 kg of hazardous waste per month.

Date of Government Version: 03/01/2018 Date Data Arrived at EDR: 03/28/2018 Date Made Active in Reports: 06/22/2018

Number of Days to Update: 86

Source: Environmental Protection Agency

Telephone: (206) 553-1200 Last EDR Contact: 09/19/2018

Next Scheduled EDR Contact: 01/07/2019 Data Release Frequency: Quarterly

RCRA-CESQG: RCRA - Conditionally Exempt Small Quantity Generators

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Conditionally exempt small quantity generators (CESQGs) generate less than 100 kg of hazardous waste, or less than 1 kg of acutely hazardous waste per month.

Date of Government Version: 03/01/2018 Date Data Arrived at EDR: 03/28/2018 Date Made Active in Reports: 06/22/2018

Number of Days to Update: 86

Source: Environmental Protection Agency

Telephone: (206) 553-1200 Last EDR Contact: 09/19/2018

Next Scheduled EDR Contact: 01/07/2019 Data Release Frequency: Quarterly

Federal institutional controls / engineering controls registries

LUCIS: Land Use Control Information System

LUCIS contains records of land use control information pertaining to the former Navy Base Realignment and Closure properties.

Date of Government Version: 05/14/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: Department of the Navy Telephone: 843-820-7326 Last EDR Contact: 07/16/2018

Next Scheduled EDR Contact: 11/26/2018 Data Release Frequency: Varies

US ENG CONTROLS: Engineering Controls Sites List

A listing of sites with engineering controls in place. Engineering controls include various forms of caps, building foundations, liners, and treatment methods to create pathway elimination for regulated substances to enter environmental media or effect human health.

Date of Government Version: 07/31/2018 Date Data Arrived at EDR: 08/28/2018 Date Made Active in Reports: 09/14/2018

Number of Days to Update: 17

Source: Environmental Protection Agency

Telephone: 703-603-0695 Last EDR Contact: 08/28/2018

Next Scheduled EDR Contact: 12/10/2018 Data Release Frequency: Varies

US INST CONTROL: Sites with Institutional Controls

A listing of sites with institutional controls in place. Institutional controls include administrative measures, such as groundwater use restrictions, construction restrictions, property use restrictions, and post remediation care requirements intended to prevent exposure to contaminants remaining on site. Deed restrictions are generally required as part of the institutional controls.

Date of Government Version: 07/31/2018 Date Data Arrived at EDR: 08/28/2018 Date Made Active in Reports: 09/14/2018

Number of Days to Update: 17

Source: Environmental Protection Agency

Telephone: 703-603-0695 Last EDR Contact: 08/28/2018

Next Scheduled EDR Contact: 12/10/2018

Data Release Frequency: Varies

Federal ERNS list

ERNS: Emergency Response Notification System

Emergency Response Notification System. ERNS records and stores information on reported releases of oil and hazardous

substances.

Date of Government Version: 06/18/2018 Date Data Arrived at EDR: 06/27/2018 Date Made Active in Reports: 09/14/2018

Number of Days to Update: 79

Source: National Response Center, United States Coast Guard

Telephone: 202-267-2180 Last EDR Contact: 09/25/2018

Next Scheduled EDR Contact: 01/07/2019 Data Release Frequency: Quarterly

State- and tribal - equivalent CERCLIS

CRL: Confirmed Release List and Inventory All facilities with a confirmed release.

Date of Government Version: 08/01/2018 Date Data Arrived at EDR: 08/10/2018 Date Made Active in Reports: 09/24/2018

Number of Days to Update: 45

Source: Department of Environmental Quality

Telephone: 503-229-6170 Last EDR Contact: 08/10/2018

Next Scheduled EDR Contact: 11/26/2018 Data Release Frequency: Quarterly

ECSI: Environmental Cleanup Site Information System

Sites that are or may be contaminated and may require cleanup.

Date of Government Version: 10/01/2018 Date Data Arrived at EDR: 10/03/2018 Date Made Active in Reports: 10/23/2018

Number of Days to Update: 20

Source: Department of Environmental Quality

Telephone: 503-229-6629 Last EDR Contact: 10/03/2018

Next Scheduled EDR Contact: 01/14/2019 Data Release Frequency: Quarterly

State and tribal landfill and/or solid waste disposal site lists

SWF/LF: Solid Waste Facilities List

Solid Waste Facilities/Landfill Sites. SWF/LF type records typically contain an inventory of solid waste disposal facilities or landfills in a particular state. Depending on the state, these may be active or inactive facilities or open dumps that failed to meet RCRA Subtitle D Section 4004 criteria for solid waste landfills or disposal sites.

Date of Government Version: 07/16/2018 Date Data Arrived at EDR: 07/20/2018 Date Made Active in Reports: 08/20/2018

Number of Days to Update: 31

Source: Department of Environmental Quality

Telephone: 503-229-6299 Last EDR Contact: 10/29/2018

Next Scheduled EDR Contact: 01/28/2019 Data Release Frequency: Semi-Annually

State and tribal leaking storage tank lists

LUST: Leaking Underground Storage Tank Database

Leaking Underground Storage Tank Incident Reports. LUST records contain an inventory of reported leaking underground storage tank incidents. Not all states maintain these records, and the information stored varies by state.

Date of Government Version: 07/02/2018 Date Data Arrived at EDR: 08/10/2018 Date Made Active in Reports: 09/24/2018

Number of Days to Update: 45

Source: Department of Environmental Quality

Telephone: 503-229-5790 Last EDR Contact: 08/10/2018

Next Scheduled EDR Contact: 11/26/2018 Data Release Frequency: Quarterly

INDIAN LUST R10: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Alaska, Idaho, Oregon and Washington.

Date of Government Version: 04/12/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 10 Telephone: 206-553-2857 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN LUST R9: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Arizona, California, New Mexico and Nevada

Date of Government Version: 04/10/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: Environmental Protection Agency

Telephone: 415-972-3372 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN LUST R8: Leaking Underground Storage Tanks on Indian Land

LUSTs on Indian land in Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming.

Date of Government Version: 04/25/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 8 Telephone: 303-312-6271 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN LUST R6: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in New Mexico and Oklahoma.

Date of Government Version: 04/01/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 6 Telephone: 214-665-6597 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN LUST R4: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Florida, Mississippi and North Carolina.

Date of Government Version: 05/08/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 4 Telephone: 404-562-8677 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN LUST R1: Leaking Underground Storage Tanks on Indian Land
A listing of leaking underground storage tank locations on Indian Land.

Date of Government Version: 04/13/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 1 Telephone: 617-918-1313 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN LUST R5: Leaking Underground Storage Tanks on Indian Land

Leaking underground storage tanks located on Indian Land in Michigan, Minnesota and Wisconsin.

Date of Government Version: 04/12/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA, Region 5 Telephone: 312-886-7439 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019

Data Release Frequency: Varies

INDIAN LUST R7: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Iowa, Kansas, and Nebraska

Date of Government Version: 04/24/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 7 Telephone: 913-551-7003 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

State and tribal registered storage tank lists

FEMA UST: Underground Storage Tank Listing

A listing of all FEMA owned underground storage tanks.

Date of Government Version: 05/15/2017 Date Data Arrived at EDR: 05/30/2017 Date Made Active in Reports: 10/13/2017

Number of Days to Update: 136

Source: FEMA

Telephone: 202-646-5797 Last EDR Contact: 10/10/2018

Next Scheduled EDR Contact: 01/21/2019 Data Release Frequency: Varies

UST: Underground Storage Tank Database

Registered Underground Storage Tanks. UST's are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA) and must be registered with the state department responsible for administering the UST program. Available information varies by state program.

Date of Government Version: 07/02/2018 Date Data Arrived at EDR: 08/10/2018 Date Made Active in Reports: 09/24/2018

Number of Days to Update: 45

Source: Department of Environmental Quality

Telephone: 503-229-5815 Last EDR Contact: 08/10/2018

Next Scheduled EDR Contact: 11/26/2018
Data Release Frequency: Quarterly

AST: Aboveground Storage Tanks

Aboveground storage tank locations reported to the Office of State Fire Marshal.

Date of Government Version: 09/05/2017 Date Data Arrived at EDR: 11/16/2017 Date Made Active in Reports: 01/09/2018

Number of Days to Update: 54

Source: Office of State Fire Marshal Telephone: 503-378-3473 Last EDR Contact: 10/31/2018

Next Scheduled EDR Contact: 02/11/2019 Data Release Frequency: Semi-Annually

INDIAN UST R4: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 4 (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee and Tribal Nations)

Date of Government Version: 05/08/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 4 Telephone: 404-562-9424 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN UST R6: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 6 (Louisiana, Arkansas, Oklahoma, New Mexico, Texas and 65 Tribes).

Date of Government Version: 04/01/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 6 Telephone: 214-665-7591 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN UST R9: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 9 (Arizona, California, Hawaii, Nevada, the Pacific Islands, and Tribal Nations).

Date of Government Version: 04/10/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 9 Telephone: 415-972-3368 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN UST R5: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 5 (Michigan, Minnesota and Wisconsin and Tribal Nations).

Date of Government Version: 04/12/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 5 Telephone: 312-886-6136 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN UST R10: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 10 (Alaska, Idaho, Oregon, Washington, and Tribal Nations).

Date of Government Version: 04/12/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 10 Telephone: 206-553-2857 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN UST R7: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 7 (Iowa, Kansas, Missouri, Nebraska, and 9 Tribal Nations).

Date of Government Version: 04/24/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 7 Telephone: 913-551-7003 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN UST R1: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 1 (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont and ten Tribal Nations).

Date of Government Version: 04/13/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA, Region 1 Telephone: 617-918-1313 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

INDIAN UST R8: Underground Storage Tanks on Indian Land

The Indian Underground Storage Tank (UST) database provides information about underground storage tanks on Indian land in EPA Region 8 (Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming and 27 Tribal Nations).

Date of Government Version: 04/25/2018 Date Data Arrived at EDR: 05/18/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 63

Source: EPA Region 8 Telephone: 303-312-6137 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Varies

State and tribal institutional control / engineering control registries

ENG CONTROLS: Engineering Controls Recorded at ESCI Sites

Engineering controls are physical measures selected or approved by the Director for the purpose of preventing or minimizing exposure to hazardous substances. Engineering controls may include, but are not limited to, fencing, capping, horizontal or vertical barriers, hydraulic controls, and alternative water supplies.

Date of Government Version: 10/01/2018 Date Data Arrived at EDR: 10/03/2018 Date Made Active in Reports: 10/23/2018

Number of Days to Update: 20

Source: Department of Environmental Quality

Telephone: 503-229-5193 Last EDR Contact: 10/03/2018

Next Scheduled EDR Contact: 01/14/2019 Data Release Frequency: Quarterly

INST CONTROL: Institutional Controls Recorded at ESCI Sites

An institutional control is a legal or administrative tool or action taken to reduce the potential for exposure to hazardous substances. Institutional controls may include, but are not limited to, use restrictions, environmental monitoring requirements, and site access and security measures.

Date of Government Version: 10/01/2018 Date Data Arrived at EDR: 10/03/2018 Date Made Active in Reports: 10/23/2018

Number of Days to Update: 20

Source: Department of Environmental Quality

Telephone: 503-229-5193 Last EDR Contact: 10/03/2018

Next Scheduled EDR Contact: 01/14/2019 Data Release Frequency: Quarterly

State and tribal voluntary cleanup sites

VCS: Voluntary Cleanup Program Sites

Responsible parties have entered into an agreement with DEQ to voluntarily address contamination associated with their property.

Date of Government Version: 06/29/2018 Date Data Arrived at EDR: 07/03/2018 Date Made Active in Reports: 07/23/2018

Number of Days to Update: 20

Source: DEQ

Telephone: 503-229-5256 Last EDR Contact: 10/19/2018

Next Scheduled EDR Contact: 01/14/2019 Data Release Frequency: Quarterly

INDIAN VCP R1: Voluntary Cleanup Priority Listing

A listing of voluntary cleanup priority sites located on Indian Land located in Region 1.

Date of Government Version: 07/27/2015 Date Data Arrived at EDR: 09/29/2015 Date Made Active in Reports: 02/18/2016

Number of Days to Update: 142

Source: EPA, Region 1 Telephone: 617-918-1102 Last EDR Contact: 09/24/2018

Next Scheduled EDR Contact: 01/07/2019 Data Release Frequency: Varies

INDIAN VCP R7: Voluntary Cleanup Priority Lisitng

A listing of voluntary cleanup priority sites located on Indian Land located in Region 7.

Date of Government Version: 03/20/2008 Date Data Arrived at EDR: 04/22/2008 Date Made Active in Reports: 05/19/2008

Number of Days to Update: 27

Source: EPA, Region 7 Telephone: 913-551-7365 Last EDR Contact: 04/20/2009

Next Scheduled EDR Contact: 07/20/2009 Data Release Frequency: Varies

State and tribal Brownfields sites

BROWNFIELDS: Brownfields Projects

Brownfields investigations and/or cleanups that have been conducted in Oregon.

Date of Government Version: 08/01/2018 Date Data Arrived at EDR: 08/10/2018 Date Made Active in Reports: 09/24/2018

Number of Days to Update: 45

Source: Department of Environmental Quality

Telephone: 503-229-6801 Last EDR Contact: 08/10/2018

Next Scheduled EDR Contact: 11/26/2018 Data Release Frequency: Annually

ADDITIONAL ENVIRONMENTAL RECORDS

Local Brownfield lists

US BROWNFIELDS: A Listing of Brownfields Sites

Brownfields are real property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant. Cleaning up and reinvesting in these properties takes development pressures off of undeveloped, open land, and both improves and protects the environment. Assessment, Cleanup and Redevelopment Exchange System (ACRES) stores information reported by EPA Brownfields grant recipients on brownfields properties assessed or cleaned up with grant funding as well as information on Targeted Brownfields Assessments performed by EPA Regions. A listing of ACRES Brownfield sites is obtained from Cleanups in My Community. Cleanups in My Community provides information on Brownfields properties for which information is reported back to EPA, as well as areas served by Brownfields grant programs.

Date of Government Version: 06/18/2018 Date Data Arrived at EDR: 06/20/2018 Date Made Active in Reports: 09/14/2018

Number of Days to Update: 86

Source: Environmental Protection Agency

Telephone: 202-566-2777 Last EDR Contact: 09/18/2018

Next Scheduled EDR Contact: 12/31/2018 Data Release Frequency: Semi-Annually

Local Lists of Landfill / Solid Waste Disposal Sites

HIST LF: Old Closed SW Disposal Sites

A list of solid waste disposal sites that have been closed for a long while.

Date of Government Version: 04/01/2000 Date Data Arrived at EDR: 07/08/2003 Date Made Active in Reports: 07/18/2003

Number of Days to Update: 10

Source: Department of Environmental Quality

Telephone: 503-229-5409 Last EDR Contact: 07/08/2003 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

SWRCY: Recycling Facility Location Listing A listing of recycling facility locations.

Date of Government Version: 08/28/2018 Date Data Arrived at EDR: 08/29/2018 Date Made Active in Reports: 09/24/2018

Number of Days to Update: 26

Source: Department of Environmental Quality

Telephone: 503-229-5353 Last EDR Contact: 08/29/2018

Next Scheduled EDR Contact: 12/10/2018 Data Release Frequency: Quarterly

INDIAN ODI: Report on the Status of Open Dumps on Indian Lands

Location of open dumps on Indian land.

Date of Government Version: 12/31/1998 Date Data Arrived at EDR: 12/03/2007 Date Made Active in Reports: 01/24/2008

Number of Days to Update: 52

Source: Environmental Protection Agency

Telephone: 703-308-8245 Last EDR Contact: 10/25/2018

Next Scheduled EDR Contact: 02/11/2019 Data Release Frequency: Varies

ODI: Open Dump Inventory

An open dump is defined as a disposal facility that does not comply with one or more of the Part 257 or Part 258 Subtitle D Criteria.

Date of Government Version: 06/30/1985 Date Data Arrived at EDR: 08/09/2004 Date Made Active in Reports: 09/17/2004

Number of Days to Update: 39

Source: Environmental Protection Agency

Telephone: 800-424-9346 Last EDR Contact: 06/09/2004 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

DEBRIS REGION 9: Torres Martinez Reservation Illegal Dump Site Locations

A listing of illegal dump sites location on the Torres Martinez Indian Reservation located in eastern Riverside County and northern Imperial County, California.

Date of Government Version: 01/12/2009 Date Data Arrived at EDR: 05/07/2009 Date Made Active in Reports: 09/21/2009

Number of Days to Update: 137

Source: EPA, Region 9 Telephone: 415-947-4219 Last EDR Contact: 10/22/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: No Update Planned

IHS OPEN DUMPS: Open Dumps on Indian Land

A listing of all open dumps located on Indian Land in the United States.

Date of Government Version: 04/01/2014 Date Data Arrived at EDR: 08/06/2014 Date Made Active in Reports: 01/29/2015

Number of Days to Update: 176

Source: Department of Health & Human Serivces, Indian Health Service

Telephone: 301-443-1452 Last EDR Contact: 11/02/2018

Next Scheduled EDR Contact: 02/11/2019 Data Release Frequency: Varies

Local Lists of Hazardous waste / Contaminated Sites

US HIST CDL: National Clandestine Laboratory Register

A listing of clandestine drug lab locations that have been removed from the DEAs National Clandestine Laboratory Register.

Date of Government Version: 05/18/2018 Date Data Arrived at EDR: 06/20/2018 Date Made Active in Reports: 09/14/2018

Number of Days to Update: 86

Source: Drug Enforcement Administration

Telephone: 202-307-1000 Last EDR Contact: 08/28/2018

Next Scheduled EDR Contact: 12/10/2018
Data Release Frequency: No Update Planned

AOC COL: Columbia Slough

Columbia Slough waterway boundaries.

Date of Government Version: 08/10/2005 Date Data Arrived at EDR: 05/17/2006 Date Made Active in Reports: 06/16/2006

Number of Days to Update: 30

Source: City of Portland Environmental Services

Telephone: 503-823-5310 Last EDR Contact: 03/13/2007 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

AOC MU: East Multnomah County Area

Approximate extent of TSA VOC plume February, 2002

Date of Government Version: N/A
Date Data Arrived at EDR: 10/07/2002
Date Made Active in Reports: 10/22/2002

Number of Days to Update: 15

Source: City of Portland Environmental Services

Telephone: 503-823-5310 Last EDR Contact: 03/13/2007 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

CDL 2: Clandestine Drug Lab Site Listing

A listing of clandestine drug lab site locations included in the Incident database.

Date of Government Version: 07/01/2018 Date Data Arrived at EDR: 08/01/2018 Date Made Active in Reports: 08/15/2018

Number of Days to Update: 14

Source: Oregon State Police Telephone: 503-373-1540 Last EDR Contact: 10/31/2018

Next Scheduled EDR Contact: 02/11/2019 Data Release Frequency: Varies

CDL: Uninhabitable Drug Lab Properties

The properties listed on these county pages have been declared by a law enforcement agency to be unfit for use due to meth lab and/or storage activities. The properties are considered uninhabitable until cleaned up by a state certified decontamination contractor and a certificate of fitness is issued by the Oregon Health Division.

Date of Government Version: 09/21/2018 Date Data Arrived at EDR: 09/25/2018 Date Made Active in Reports: 10/22/2018

Number of Days to Update: 27

Source: Department of Consumer & Business Services

Telephone: 503-378-4133 Last EDR Contact: 08/01/2018

Next Scheduled EDR Contact: 11/19/2018 Data Release Frequency: Quarterly

US CDL: Clandestine Drug Labs

A listing of clandestine drug lab locations. The U.S. Department of Justice ("the Department") provides this web site as a public service. It contains addresses of some locations where law enforcement agencies reported they found chemicals or other items that indicated the presence of either clandestine drug laboratories or dumpsites. In most cases, the source of the entries is not the Department, and the Department has not verified the entry and does not guarantee its accuracy. Members of the public must verify the accuracy of all entries by, for example, contacting local law enforcement and local health departments.

Date of Government Version: 05/18/2018 Date Data Arrived at EDR: 06/20/2018 Date Made Active in Reports: 09/14/2018

Number of Days to Update: 86

Source: Drug Enforcement Administration

Telephone: 202-307-1000 Last EDR Contact: 08/28/2018

Next Scheduled EDR Contact: 12/10/2018

Data Release Frequency: Quarterly

Local Land Records

LIENS 2: CERCLA Lien Information

A Federal CERCLA ('Superfund') lien can exist by operation of law at any site or property at which EPA has spent Superfund monies. These monies are spent to investigate and address releases and threatened releases of contamination. CERCLIS provides information as to the identity of these sites and properties.

Date of Government Version: 07/17/2018 Date Data Arrived at EDR: 08/09/2018 Date Made Active in Reports: 10/05/2018

Number of Days to Update: 57

Source: Environmental Protection Agency

Telephone: 202-564-6023 Last EDR Contact: 10/04/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Semi-Annually

Records of Emergency Release Reports

HMIRS: Hazardous Materials Information Reporting System

Hazardous Materials Incident Report System. HMIRS contains hazardous material spill incidents reported to DOT.

Date of Government Version: 03/26/2018 Date Data Arrived at EDR: 03/27/2018 Date Made Active in Reports: 06/08/2018

Number of Days to Update: 73

Source: U.S. Department of Transportation

Telephone: 202-366-4555 Last EDR Contact: 09/25/2018

Next Scheduled EDR Contact: 01/07/2019 Data Release Frequency: Quarterly

SPILLS: Spill Data

Oil and hazardous material spills reported to the Environmental Response Program.

Date of Government Version: 10/01/2018 Date Data Arrived at EDR: 10/02/2018 Date Made Active in Reports: 10/23/2018

Number of Days to Update: 21

Source: Department of Environmental Quality

Telephone: 503-229-5815 Last EDR Contact: 10/01/2018

Next Scheduled EDR Contact: 01/14/2019 Data Release Frequency: Semi-Annually

HAZMAT: Hazmat/Incidents

Hazardous material incidents reported to the State Fire Marshal by emergency responders. The hazardous material may or may not have been released.

Date of Government Version: 07/01/2018 Date Data Arrived at EDR: 08/01/2018 Date Made Active in Reports: 08/15/2018

Number of Days to Update: 14

Source: State Fire Marshal's Office Telephone: 503-373-1540 Last EDR Contact: 10/31/2018

Next Scheduled EDR Contact: 02/11/2019 Data Release Frequency: Semi-Annually

SPILLS 90: SPILLS90 data from FirstSearch

Spills 90 includes those spill and release records available exclusively from FirstSearch databases. Typically, they may include chemical, oil and/or hazardous substance spills recorded after 1990. Duplicate records that are already included in EDR incident and release records are not included in Spills 90.

Date of Government Version: 05/01/2006 Date Data Arrived at EDR: 01/03/2013 Date Made Active in Reports: 02/22/2013

Number of Days to Update: 50

Source: FirstSearch Telephone: N/A

Last EDR Contact: 01/03/2013 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

Other Ascertainable Records

RCRA NonGen / NLR: RCRA - Non Generators / No Longer Regulated

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Non-Generators do not presently generate hazardous waste.

Date of Government Version: 03/01/2018 Date Data Arrived at EDR: 03/28/2018 Date Made Active in Reports: 06/22/2018

Number of Days to Update: 86

Source: Environmental Protection Agency

Telephone: (206) 553-1200 Last EDR Contact: 09/19/2018

Next Scheduled EDR Contact: 01/07/2019 Data Release Frequency: Quarterly

FUDS: Formerly Used Defense Sites

The listing includes locations of Formerly Used Defense Sites properties where the US Army Corps of Engineers is actively working or will take necessary cleanup actions.

Date of Government Version: 01/31/2015 Date Data Arrived at EDR: 07/08/2015 Date Made Active in Reports: 10/13/2015

Number of Days to Update: 97

Source: U.S. Army Corps of Engineers

Telephone: 202-528-4285 Last EDR Contact: 08/24/2018

Next Scheduled EDR Contact: 12/03/2018
Data Release Frequency: Varies

DOD: Department of Defense Sites

This data set consists of federally owned or administered lands, administered by the Department of Defense, that have any area equal to or greater than 640 acres of the United States, Puerto Rico, and the U.S. Virgin Islands.

Date of Government Version: 12/31/2005 Date Data Arrived at EDR: 11/10/2006 Date Made Active in Reports: 01/11/2007

Number of Days to Update: 62

Source: USGS

Telephone: 888-275-8747 Last EDR Contact: 10/12/2018

Next Scheduled EDR Contact: 01/21/2019 Data Release Frequency: Semi-Annually

FEDLAND: Federal and Indian Lands

Federally and Indian administrated lands of the United States. Lands included are administrated by: Army Corps of Engineers, Bureau of Reclamation, National Wild and Scenic River, National Wildlife Refuge, Public Domain Land, Wilderness, Wilderness Study Area, Wildlife Management Area, Bureau of Indian Affairs, Bureau of Land Management, Department of Justice, Forest Service, Fish and Wildlife Service, National Park Service.

Date of Government Version: 12/31/2005 Date Data Arrived at EDR: 02/06/2006 Date Made Active in Reports: 01/11/2007

Number of Days to Update: 339

Source: U.S. Geological Survey Telephone: 888-275-8747 Last EDR Contact: 10/12/2018

Next Scheduled EDR Contact: 01/21/2019

Data Release Frequency: N/A

SCRD DRYCLEANERS: State Coalition for Remediation of Drycleaners Listing

The State Coalition for Remediation of Drycleaners was established in 1998, with support from the U.S. EPA Office of Superfund Remediation and Technology Innovation. It is comprised of representatives of states with established drycleaner remediation programs. Currently the member states are Alabama, Connecticut, Florida, Illinois, Kansas, Minnesota, Missouri, North Carolina, Oregon, South Carolina, Tennessee, Texas, and Wisconsin.

Date of Government Version: 01/01/2017 Date Data Arrived at EDR: 02/03/2017 Date Made Active in Reports: 04/07/2017

Number of Days to Update: 63

Source: Environmental Protection Agency

Telephone: 615-532-8599 Last EDR Contact: 08/17/2018

Next Scheduled EDR Contact: 11/26/2018 Data Release Frequency: Varies

US FIN ASSUR: Financial Assurance Information

All owners and operators of facilities that treat, store, or dispose of hazardous waste are required to provide proof that they will have sufficient funds to pay for the clean up, closure, and post-closure care of their facilities.

Date of Government Version: 05/31/2018 Date Data Arrived at EDR: 06/27/2018 Date Made Active in Reports: 10/05/2018

Number of Days to Update: 100

Source: Environmental Protection Agency

Telephone: 202-566-1917 Last EDR Contact: 09/25/2018

Next Scheduled EDR Contact: 01/07/2019 Data Release Frequency: Quarterly

EPA WATCH LIST: EPA WATCH LIST

EPA maintains a "Watch List" to facilitate dialogue between EPA, state and local environmental agencies on enforcement matters relating to facilities with alleged violations identified as either significant or high priority. Being on the Watch List does not mean that the facility has actually violated the law only that an investigation by EPA or a state or local environmental agency has led those organizations to allege that an unproven violation has in fact occurred. Being on the Watch List does not represent a higher level of concern regarding the alleged violations that were detected, but instead indicates cases requiring additional dialogue between EPA, state and local agencies - primarily because of the length of time the alleged violation has gone unaddressed or unresolved.

Date of Government Version: 08/30/2013
Date Data Arrived at EDR: 03/21/2014
Date Made Active in Reports: 06/17/2014

Number of Days to Update: 88

Source: Environmental Protection Agency

Telephone: 617-520-3000 Last EDR Contact: 08/03/2018

Next Scheduled EDR Contact: 11/19/2018 Data Release Frequency: Quarterly

Data Release Frequency.

2020 COR ACTION: 2020 Corrective Action Program List

The EPA has set ambitious goals for the RCRA Corrective Action program by creating the 2020 Corrective Action Universe. This RCRA cleanup baseline includes facilities expected to need corrective action. The 2020 universe contains a wide variety of sites. Some properties are heavily contaminated while others were contaminated but have since been cleaned up. Still others have not been fully investigated yet, and may require little or no remediation. Inclusion in the 2020 Universe does not necessarily imply failure on the part of a facility to meet its RCRA obligations.

Date of Government Version: 09/30/2017 Date Data Arrived at EDR: 05/08/2018 Date Made Active in Reports: 07/20/2018

Number of Days to Update: 73

Source: Environmental Protection Agency

Telephone: 703-308-4044 Last EDR Contact: 08/10/2018

Next Scheduled EDR Contact: 11/19/2018

Data Release Frequency: Varies

TSCA: Toxic Substances Control Act

Toxic Substances Control Act. TSCA identifies manufacturers and importers of chemical substances included on the TSCA Chemical Substance Inventory list. It includes data on the production volume of these substances by plant site.

Date of Government Version: 12/31/2016 Date Data Arrived at EDR: 06/21/2017 Date Made Active in Reports: 01/05/2018

Number of Days to Update: 198

Source: EPA

Telephone: 202-260-5521 Last EDR Contact: 09/21/2018

Next Scheduled EDR Contact: 12/31/2018 Data Release Frequency: Every 4 Years

TRIS: Toxic Chemical Release Inventory System

Toxic Release Inventory System. TRIS identifies facilities which release toxic chemicals to the air, water and land in reportable quantities under SARA Title III Section 313.

Date of Government Version: 12/31/2016 Date Data Arrived at EDR: 01/10/2018 Date Made Active in Reports: 01/12/2018

Number of Days to Update: 2

Source: EPA

Telephone: 202-566-0250 Last EDR Contact: 08/24/2018

Next Scheduled EDR Contact: 12/03/2018 Data Release Frequency: Annually

SSTS: Section 7 Tracking Systems

Section 7 of the Federal Insecticide, Fungicide and Rodenticide Act, as amended (92 Stat. 829) requires all registered pesticide-producing establishments to submit a report to the Environmental Protection Agency by March 1st each year. Each establishment must report the types and amounts of pesticides, active ingredients and devices being produced, and those having been produced and sold or distributed in the past year.

Date of Government Version: 12/31/2009 Date Data Arrived at EDR: 12/10/2010 Date Made Active in Reports: 02/25/2011

Number of Days to Update: 77

Source: EPA Telephone: 202-564-4203 Last EDR Contact: 10/24/2018

Next Scheduled EDR Contact: 02/04/2019 Data Release Frequency: Annually

ROD: Records Of Decision

Record of Decision. ROD documents mandate a permanent remedy at an NPL (Superfund) site containing technical and health information to aid in the cleanup.

Date of Government Version: 07/17/2018 Date Data Arrived at EDR: 08/09/2018 Date Made Active in Reports: 10/05/2018

Number of Days to Update: 57

Source: EPA

Telephone: 703-416-0223 Last EDR Contact: 10/04/2018

Next Scheduled EDR Contact: 12/17/2018 Data Release Frequency: Annually

RMP: Risk Management Plans

When Congress passed the Clean Air Act Amendments of 1990, it required EPA to publish regulations and guidance for chemical accident prevention at facilities using extremely hazardous substances. The Risk Management Program Rule (RMP Rule) was written to implement Section 112(r) of these amendments. The rule, which built upon existing industry codes and standards, requires companies of all sizes that use certain flammable and toxic substances to develop a Risk Management Program, which includes a(n): Hazard assessment that details the potential effects of an accidental release, an accident history of the last five years, and an evaluation of worst-case and alternative accidental releases; Prevention program that includes safety precautions and maintenance, monitoring, and employee training measures; and Emergency response program that spells out emergency health care, employee training measures and procedures for informing the public and response agencies (e.g the fire department) should an accident occur.

Date of Government Version: 08/01/2018 Date Data Arrived at EDR: 08/22/2018 Date Made Active in Reports: 10/05/2018

Number of Days to Update: 44

Source: Environmental Protection Agency

Telephone: 202-564-8600 Last EDR Contact: 10/23/2018

Next Scheduled EDR Contact: 02/04/2019
Data Release Frequency: Varies

RAATS: RCRA Administrative Action Tracking System

RCRA Administration Action Tracking System. RAATS contains records based on enforcement actions issued under RCRA pertaining to major violators and includes administrative and civil actions brought by the EPA. For administration actions after September 30, 1995, data entry in the RAATS database was discontinued. EPA will retain a copy of the database for historical records. It was necessary to terminate RAATS because a decrease in agency resources made it impossible to continue to update the information contained in the database.

Date of Government Version: 04/17/1995 Date Data Arrived at EDR: 07/03/1995 Date Made Active in Reports: 08/07/1995

Number of Days to Update: 35

Source: EPA

Telephone: 202-564-4104 Last EDR Contact: 06/02/2008

Next Scheduled EDR Contact: 09/01/2008 Data Release Frequency: No Update Planned

PRP: Potentially Responsible Parties

A listing of verified Potentially Responsible Parties

Date of Government Version: 10/25/2013 Date Data Arrived at EDR: 10/17/2014 Date Made Active in Reports: 10/20/2014

Number of Days to Update: 3

Source: EPA

Telephone: 202-564-6023 Last EDR Contact: 10/04/2018

Next Scheduled EDR Contact: 11/19/2018 Data Release Frequency: Quarterly

PADS: PCB Activity Database System

PCB Activity Database. PADS Identifies generators, transporters, commercial storers and/or brokers and disposers of PCB's who are required to notify the EPA of such activities.

Date of Government Version: 06/01/2017 Date Data Arrived at EDR: 06/09/2017 Date Made Active in Reports: 10/13/2017

Number of Days to Update: 126

Source: EPA

Telephone: 202-566-0500 Last EDR Contact: 10/11/2018

Next Scheduled EDR Contact: 01/21/2019 Data Release Frequency: Annually

ICIS: Integrated Compliance Information System

The Integrated Compliance Information System (ICIS) supports the information needs of the national enforcement and compliance program as well as the unique needs of the National Pollutant Discharge Elimination System (NPDES) program.

Date of Government Version: 11/18/2016 Date Data Arrived at EDR: 11/23/2016 Date Made Active in Reports: 02/10/2017

Number of Days to Update: 79

Source: Environmental Protection Agency

Telephone: 202-564-2501 Last EDR Contact: 10/09/2018

Next Scheduled EDR Contact: 01/21/2019 Data Release Frequency: Quarterly

FTTS: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act)

FTTS tracks administrative cases and pesticide enforcement actions and compliance activities related to FIFRA, TSCA and EPCRA (Emergency Planning and Community Right-to-Know Act). To maintain currency, EDR contacts the Agency on a quarterly basis.

Date of Government Version: 04/09/2009 Date Data Arrived at EDR: 04/16/2009 Date Made Active in Reports: 05/11/2009

Number of Days to Update: 25

Source: EPA/Office of Prevention, Pesticides and Toxic Substances

Telephone: 202-566-1667 Last EDR Contact: 08/18/2017

Next Scheduled EDR Contact: 12/04/2017 Data Release Frequency: Quarterly

FTTS INSP: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act) A listing of FIFRA/TSCA Tracking System (FTTS) inspections and enforcements.

Date of Government Version: 04/09/2009 Date Data Arrived at EDR: 04/16/2009 Date Made Active in Reports: 05/11/2009

Number of Days to Update: 25

Source: EPA

Telephone: 202-566-1667 Last EDR Contact: 08/18/2017

Next Scheduled EDR Contact: 12/04/2017 Data Release Frequency: Quarterly

MLTS: Material Licensing Tracking System

MLTS is maintained by the Nuclear Regulatory Commission and contains a list of approximately 8,100 sites which possess or use radioactive materials and which are subject to NRC licensing requirements. To maintain currency, EDR contacts the Agency on a quarterly basis.

Date of Government Version: 08/30/2016 Date Data Arrived at EDR: 09/08/2016 Date Made Active in Reports: 10/21/2016

Number of Days to Update: 43

Source: Nuclear Regulatory Commission Telephone: 301-415-7169

Last EDR Contact: 10/11/2018 Next Scheduled EDR Contact: 02/04/2019

Data Release Frequency: Quarterly

COAL ASH DOE: Steam-Electric Plant Operation Data A listing of power plants that store ash in surface ponds.

Date of Government Version: 12/31/2005 Date Data Arrived at EDR: 08/07/2009 Date Made Active in Reports: 10/22/2009

Number of Days to Update: 76

Source: Department of Energy Telephone: 202-586-8719 Last EDR Contact: 09/07/2018

Next Scheduled EDR Contact: 12/17/2018 Data Release Frequency: Varies

COAL ASH EPA: Coal Combustion Residues Surface Impoundments List

A listing of coal combustion residues surface impoundments with high hazard potential ratings.

Date of Government Version: 07/01/2014 Date Data Arrived at EDR: 09/10/2014 Date Made Active in Reports: 10/20/2014

Number of Days to Update: 40

Source: Environmental Protection Agency

Telephone: N/A

Last EDR Contact: 09/04/2018

Next Scheduled EDR Contact: 12/17/2018 Data Release Frequency: Varies

PCB TRANSFORMER: PCB Transformer Registration Database

The database of PCB transformer registrations that includes all PCB registration submittals.

Date of Government Version: 05/24/2017 Date Data Arrived at EDR: 11/30/2017 Date Made Active in Reports: 12/15/2017

Number of Days to Update: 15

Source: Environmental Protection Agency

Telephone: 202-566-0517 Last EDR Contact: 10/26/2018

Next Scheduled EDR Contact: 02/04/2019

Data Release Frequency: Varies

RADINFO: Radiation Information Database

The Radiation Information Database (RADINFO) contains information about facilities that are regulated by U.S. Environmental Protection Agency (EPA) regulations for radiation and radioactivity.

Date of Government Version: 07/02/2018 Date Data Arrived at EDR: 07/05/2018 Date Made Active in Reports: 10/05/2018

Number of Days to Update: 92

Source: Environmental Protection Agency

Telephone: 202-343-9775 Last EDR Contact: 10/03/2018

Next Scheduled EDR Contact: 01/14/2019 Data Release Frequency: Quarterly

HIST FTTS: FIFRA/TSCA Tracking System Administrative Case Listing

A complete administrative case listing from the FIFRA/TSCA Tracking System (FTTS) for all ten EPA regions. The information was obtained from the National Compliance Database (NCDB). NCDB supports the implementation of FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act) and TSCA (Toxic Substances Control Act). Some EPA regions are now closing out records. Because of that, and the fact that some EPA regions are not providing EPA Headquarters with updated records, it was decided to create a HIST FTTS database. It included records that may not be included in the newer FTTS database updates. This database is no longer updated.

Date of Government Version: 10/19/2006 Date Data Arrived at EDR: 03/01/2007 Date Made Active in Reports: 04/10/2007

Number of Days to Update: 40

Source: Environmental Protection Agency

Telephone: 202-564-2501 Last EDR Contact: 12/17/2007

Next Scheduled EDR Contact: 03/17/2008 Data Release Frequency: No Update Planned

HIST FTTS INSP: FIFRA/TSCA Tracking System Inspection & Enforcement Case Listing

A complete inspection and enforcement case listing from the FIFRA/TSCA Tracking System (FTTS) for all ten EPA regions. The information was obtained from the National Compliance Database (NCDB). NCDB supports the implementation of FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act) and TSCA (Toxic Substances Control Act). Some EPA regions are now closing out records. Because of that, and the fact that some EPA regions are not providing EPA Headquarters with updated records, it was decided to create a HIST FTTS database. It included records that may not be included in the newer FTTS database updates. This database is no longer updated.

Date of Government Version: 10/19/2006 Date Data Arrived at EDR: 03/01/2007 Date Made Active in Reports: 04/10/2007

Number of Days to Update: 40

Source: Environmental Protection Agency

Telephone: 202-564-2501 Last EDR Contact: 12/17/2008

Next Scheduled EDR Contact: 03/17/2008 Data Release Frequency: No Update Planned

DOT OPS: Incident and Accident Data

Department of Transporation, Office of Pipeline Safety Incident and Accident data.

Date of Government Version: 07/31/2012 Date Data Arrived at EDR: 08/07/2012 Date Made Active in Reports: 09/18/2012

Number of Days to Update: 42

Source: Department of Transporation, Office of Pipeline Safety

Telephone: 202-366-4595 Last EDR Contact: 10/30/2018

Next Scheduled EDR Contact: 02/11/2019 Data Release Frequency: Varies

CONSENT: Superfund (CERCLA) Consent Decrees

Major legal settlements that establish responsibility and standards for cleanup at NPL (Superfund) sites. Released periodically by United States District Courts after settlement by parties to litigation matters.

Date of Government Version: 06/30/2018 Date Data Arrived at EDR: 07/17/2018 Date Made Active in Reports: 10/05/2018

Number of Days to Update: 80

Source: Department of Justice, Consent Decree Library

Telephone: Varies

Last EDR Contact: 10/01/2018

Next Scheduled EDR Contact: 12/31/2018

Data Release Frequency: Varies

BRS: Biennial Reporting System

The Biennial Reporting System is a national system administered by the EPA that collects data on the generation and management of hazardous waste. BRS captures detailed data from two groups: Large Quantity Generators (LQG) and Treatment, Storage, and Disposal Facilities.

Date of Government Version: 12/31/2015 Date Data Arrived at EDR: 02/22/2017 Date Made Active in Reports: 09/28/2017

Number of Days to Update: 218

Source: EPA/NTIS Telephone: 800-424-9346 Last EDR Contact: 08/24/2018

Next Scheduled EDR Contact: 12/03/2018 Data Release Frequency: Biennially

INDIAN RESERV: Indian Reservations

This map layer portrays Indian administered lands of the United States that have any area equal to or greater than 640 acres.

Date of Government Version: 12/31/2014 Date Data Arrived at EDR: 07/14/2015 Date Made Active in Reports: 01/10/2017

Number of Days to Update: 546

Source: USGS

Telephone: 202-208-3710 Last EDR Contact: 10/09/2018

Next Scheduled EDR Contact: 01/21/2019 Data Release Frequency: Semi-Annually

FUSRAP: Formerly Utilized Sites Remedial Action Program

DOE established the Formerly Utilized Sites Remedial Action Program (FUSRAP) in 1974 to remediate sites where radioactive contamination remained from Manhattan Project and early U.S. Atomic Energy Commission (AEC) operations.

Date of Government Version: 08/08/2017 Date Data Arrived at EDR: 09/11/2018 Date Made Active in Reports: 09/14/2018

Number of Days to Update: 3

Source: Department of Energy Telephone: 202-586-3559 Last EDR Contact: 11/01/2018

Next Scheduled EDR Contact: 02/18/2019 Data Release Frequency: Varies

UMTRA: Uranium Mill Tailings Sites

Uranium ore was mined by private companies for federal government use in national defense programs. When the mills shut down, large piles of the sand-like material (mill tailings) remain after uranium has been extracted from the ore. Levels of human exposure to radioactive materials from the piles are low; however, in some cases tailings were used as construction materials before the potential health hazards of the tailings were recognized.

Date of Government Version: 06/23/2017 Date Data Arrived at EDR: 10/11/2017 Date Made Active in Reports: 11/03/2017

Number of Days to Update: 23

Source: Department of Energy Telephone: 505-845-0011 Last EDR Contact: 08/20/2018

Next Scheduled EDR Contact: 12/03/2018 Data Release Frequency: Varies

LEAD SMELTER 1: Lead Smelter Sites

A listing of former lead smelter site locations.

Date of Government Version: 07/17/2018 Date Data Arrived at EDR: 08/09/2018 Date Made Active in Reports: 10/05/2018

Number of Days to Update: 57

Source: Environmental Protection Agency

Telephone: 703-603-8787 Last EDR Contact: 10/04/2018

Next Scheduled EDR Contact: 01/14/2019 Data Release Frequency: Varies

LEAD SMELTER 2: Lead Smelter Sites

A list of several hundred sites in the U.S. where secondary lead smelting was done from 1931and 1964. These sites may pose a threat to public health through ingestion or inhalation of contaminated soil or dust

Date of Government Version: 04/05/2001 Date Data Arrived at EDR: 10/27/2010 Date Made Active in Reports: 12/02/2010

Number of Days to Update: 36

Source: American Journal of Public Health Telephone: 703-305-6451

Last EDR Contact: 12/02/2009 Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

US AIRS (AFS): Aerometric Information Retrieval System Facility Subsystem (AFS)

The database is a sub-system of Aerometric Information Retrieval System (AIRS). AFS contains compliance data on air pollution point sources regulated by the U.S. EPA and/or state and local air regulatory agencies. This information comes from source reports by various stationary sources of air pollution, such as electric power plants, steel mills, factories, and universities, and provides information about the air pollutants they produce. Action, air program, air program pollutant, and general level plant data. It is used to track emissions and compliance data from industrial plants.

Date of Government Version: 10/12/2016 Date Data Arrived at EDR: 10/26/2016 Date Made Active in Reports: 02/03/2017

Number of Days to Update: 100

Source: EPA

Telephone: 202-564-2496 Last EDR Contact: 09/26/2017

Next Scheduled EDR Contact: 01/08/2018 Data Release Frequency: Annually

US AIRS MINOR: Air Facility System Data A listing of minor source facilities.

> Date of Government Version: 10/12/2016 Date Data Arrived at EDR: 10/26/2016 Date Made Active in Reports: 02/03/2017

Number of Days to Update: 100

Source: EPA

Telephone: 202-564-2496 Last EDR Contact: 09/26/2017

Next Scheduled EDR Contact: 01/08/2018 Data Release Frequency: Annually

US MINES: Mines Master Index File

Contains all mine identification numbers issued for mines active or opened since 1971. The data also includes violation information.

Date of Government Version: 08/01/2018 Date Data Arrived at EDR: 08/29/2018 Date Made Active in Reports: 10/05/2018

Number of Days to Update: 37

Source: Department of Labor, Mine Safety and Health Administration

Telephone: 303-231-5959 Last EDR Contact: 08/29/2018

Next Scheduled EDR Contact: 12/10/2018 Data Release Frequency: Semi-Annually

US MINES 2: Ferrous and Nonferrous Metal Mines Database Listing

This map layer includes ferrous (ferrous metal mines are facilities that extract ferrous metals, such as iron ore or molybdenum) and nonferrous (Nonferrous metal mines are facilities that extract nonferrous metals, such as gold, silver, copper, zinc, and lead) metal mines in the United States.

Date of Government Version: 12/05/2005 Date Data Arrived at EDR: 02/29/2008 Date Made Active in Reports: 04/18/2008

Number of Days to Update: 49

Source: USGS

Telephone: 703-648-7709 Last EDR Contact: 08/31/2018

Next Scheduled EDR Contact: 12/10/2018 Data Release Frequency: Varies

US MINES 3: Active Mines & Mineral Plants Database Listing

Active Mines and Mineral Processing Plant operations for commodities monitored by the Minerals Information Team of the USGS.

Date of Government Version: 04/14/2011 Date Data Arrived at EDR: 06/08/2011 Date Made Active in Reports: 09/13/2011

Number of Days to Update: 97

Source: USGS

Telephone: 703-648-7709 Last EDR Contact: 08/31/2018

Next Scheduled EDR Contact: 12/10/2018 Data Release Frequency: Varies

ABANDONED MINES: Abandoned Mines

An inventory of land and water impacted by past mining (primarily coal mining) is maintained by OSMRE to provide information needed to implement the Surface Mining Control and Reclamation Act of 1977 (SMCRA). The inventory contains information on the location, type, and extent of AML impacts, as well as, information on the cost associated with the reclamation of those problems. The inventory is based upon field surveys by State, Tribal, and OSMRE program officials. It is dynamic to the extent that it is modified as new problems are identified and existing problems are reclaimed.

Date of Government Version: 09/10/2018 Date Data Arrived at EDR: 09/11/2018 Date Made Active in Reports: 09/14/2018

Number of Days to Update: 3

Source: Department of Interior Telephone: 202-208-2609 Last EDR Contact: 09/10/2018

Next Scheduled EDR Contact: 12/24/2018
Data Release Frequency: Quarterly

FINDS: Facility Index System/Facility Registry System

Facility Index System. FINDS contains both facility information and 'pointers' to other sources that contain more detail. EDR includes the following FINDS databases in this report: PCS (Permit Compliance System), AIRS (Aerometric Information Retrieval System), DOCKET (Enforcement Docket used to manage and track information on civil judicial enforcement cases for all environmental statutes), FURS (Federal Underground Injection Control), C-DOCKET (Criminal Docket System used to track criminal enforcement actions for all environmental statutes), FFIS (Federal Facilities Information System), STATE (State Environmental Laws and Statutes), and PADS (PCB Activity Data System).

Date of Government Version: 08/07/2018 Date Data Arrived at EDR: 09/05/2018 Date Made Active in Reports: 10/05/2018

Number of Days to Update: 30

Source: EPA

Telephone: (206) 553-1200 Last EDR Contact: 09/18/2018

Next Scheduled EDR Contact: 12/17/2018 Data Release Frequency: Quarterly

UXO: Unexploded Ordnance Sites

A listing of unexploded ordnance site locations

Date of Government Version: 09/30/2017 Date Data Arrived at EDR: 06/19/2018 Date Made Active in Reports: 09/14/2018

Number of Days to Update: 87

Source: Department of Defense Telephone: 703-704-1564 Last EDR Contact: 10/15/2018

Next Scheduled EDR Contact: 01/28/2019 Data Release Frequency: Varies

DOCKET HWC: Hazardous Waste Compliance Docket Listing

A complete list of the Federal Agency Hazardous Waste Compliance Docket Facilities.

Date of Government Version: 05/31/2018 Date Data Arrived at EDR: 07/26/2018 Date Made Active in Reports: 10/05/2018

Number of Days to Update: 71

Source: Environmental Protection Agency

Telephone: 202-564-0527 Last EDR Contact: 08/31/2018

Next Scheduled EDR Contact: 12/10/2018 Data Release Frequency: Varies

ECHO: Enforcement & Compliance History Information

ECHO provides integrated compliance and enforcement information for about 800,000 regulated facilities nationwide.

Date of Government Version: 09/02/2018 Date Data Arrived at EDR: 09/05/2018 Date Made Active in Reports: 09/14/2018

Number of Days to Update: 9

Source: Environmental Protection Agency

Telephone: 202-564-2280 Last EDR Contact: 09/05/2018

Next Scheduled EDR Contact: 12/17/2018 Data Release Frequency: Quarterly

FUELS PROGRAM: EPA Fuels Program Registered Listing

This listing includes facilities that are registered under the Part 80 (Code of Federal Regulations) EPA Fuels

Programs. All companies now are required to submit new and updated registrations.

Date of Government Version: 08/22/2018 Date Data Arrived at EDR: 08/22/2018 Date Made Active in Reports: 10/05/2018

Number of Days to Update: 44

Source: EPA

Telephone: 800-385-6164 Last EDR Contact: 08/22/2018

Next Scheduled EDR Contact: 12/03/2018
Data Release Frequency: Quarterly

AIRS: Oregon Title V Facility Listing

A listing of Title V facility source and emissions information.

Date of Government Version: 10/01/2018 Date Data Arrived at EDR: 10/04/2018 Date Made Active in Reports: 10/26/2018

Number of Days to Update: 22

Source: Department of Environmental Quality

Telephone: 503-229-6459 Last EDR Contact: 10/01/2018

Next Scheduled EDR Contact: 04/17/2047 Data Release Frequency: Annually

COAL ASH: Coal Ash Disposal Sites Listing A listing of coal ash disposal sites.

Date of Government Version: 12/31/2017 Date Data Arrived at EDR: 03/16/2018 Date Made Active in Reports: 05/15/2018

Number of Days to Update: 60

Source: Department of Environmental Quality

Telephone: 541-298-7255 Last EDR Contact: 08/30/2018

Next Scheduled EDR Contact: 12/17/2018 Data Release Frequency: Varies

DRYCLEANERS: Drycleaning Facilities

A listing of registered drycleaning facilities in Oregon.

Date of Government Version: 07/27/2018 Date Data Arrived at EDR: 07/31/2018 Date Made Active in Reports: 08/15/2018

Number of Days to Update: 15

Source: Department of Environmental Quality

Telephone: 503-229-6783 Last EDR Contact: 10/29/2018

Next Scheduled EDR Contact: 02/11/2019 Data Release Frequency: Annually

ENF: Enforcement Action Listing Enforcement actions

> Date of Government Version: 09/18/2018 Date Data Arrived at EDR: 09/19/2018 Date Made Active in Reports: 10/23/2018

Number of Days to Update: 34

Source: Department of Environmental Quality

Telephone: 503-229-5696 Last EDR Contact: 09/19/2018

Next Scheduled EDR Contact: 12/31/2018 Data Release Frequency: Quarterly

Financial Assurance 1: Financial Assurance Information Listing Financial assurance information for hazardous waste facilities.

Date of Government Version: 05/21/2018 Date Data Arrived at EDR: 06/21/2018 Date Made Active in Reports: 07/23/2018

Number of Days to Update: 32

Source: Department of Environmental Quality

Telephone: 541-633-2011 Last EDR Contact: 08/30/2018

Next Scheduled EDR Contact: 12/17/2018 Data Release Frequency: Semi-Annually

Financial Assurance 2: Financial Assurance Information Listing

Financial assurance information for solid waste facilities. Financial assurance is intended to ensure that resources are available to pay for the cost of closure, post-closure care, and corrective measures if the owner or operator of a regulated facility is unable or unwilling to pay.

Date of Government Version: 08/20/2018 Date Data Arrived at EDR: 08/21/2018 Date Made Active in Reports: 09/24/2018

Number of Days to Update: 34

Source: Department of Environmental Quality

Telephone: 503-229-5521 Last EDR Contact: 08/20/2018

Next Scheduled EDR Contact: 12/03/2018 Data Release Frequency: Semi-Annually

HSIS: Hazardous Substance Information Survey

Companies in Oregon submitting the Hazardous Substance Information Survey and either reporting or not reporting hazardous substances.

Date of Government Version: 05/03/2018 Date Data Arrived at EDR: 05/03/2018 Date Made Active in Reports: 06/07/2018

Number of Days to Update: 35

Source: State Fire Marshal's Office Telephone: 503-373-1540 Last EDR Contact: 10/31/2018

Next Scheduled EDR Contact: 02/11/2019 Data Release Frequency: Semi-Annually

OR MANIFEST: Manifest Information
Hazardous waste manifest information.

Date of Government Version: 12/31/2017 Date Data Arrived at EDR: 08/06/2018 Date Made Active in Reports: 08/15/2018

Number of Days to Update: 9

Source: Department of Environmental Quality

Telephone: N/A

Last EDR Contact: 08/01/2018

Next Scheduled EDR Contact: 11/19/2018 Data Release Frequency: Annually

NPDES: Wastewater Permits Database
A listing of permitted wastewater facilities.

Date of Government Version: 09/20/2018 Date Data Arrived at EDR: 09/20/2018 Date Made Active in Reports: 10/22/2018

Number of Days to Update: 32

Source: Department of Environmental Quality

Telephone: 503-229-5657 Last EDR Contact: 08/01/2018

Next Scheduled EDR Contact: 11/19/2018 Data Release Frequency: Varies

UIC: Underground Injection Control Program Database

DEQ's Underground Injection Control Program is authorized by the Environmental Protection Agency (EPA) to regulate all underground injection in Oregon to protect groundwater resources.

Date of Government Version: 09/25/2018 Date Data Arrived at EDR: 09/27/2018 Date Made Active in Reports: 10/23/2018

Number of Days to Update: 26

Source: Department of Environmental Quality

Telephone: 503-229-5945 Last EDR Contact: 09/25/2018

Next Scheduled EDR Contact: 01/07/2019 Data Release Frequency: Quarterly

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records

EDR MGP: EDR Proprietary Manufactured Gas Plants

The EDR Proprietary Manufactured Gas Plant Database includes records of coal gas plants (manufactured gas plants) compiled by EDR's researchers. Manufactured gas sites were used in the United States from the 1800's to 1950's to produce a gas that could be distributed and used as fuel. These plants used whale oil, rosin, coal, or a mixture of coal, oil, and water that also produced a significant amount of waste. Many of the byproducts of the gas production, such as coal tar (oily waste containing volatile and non-volatile chemicals), sludges, oils and other compounds are potentially hazardous to human health and the environment. The byproduct from this process was frequently disposed of directly at the plant site and can remain or spread slowly, serving as a continuous source of soil and groundwater contamination.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A Number of Days to Update: N/A Source: EDR, Inc.
Telephone: N/A
Last EDR Contact: N/A

Next Scheduled EDR Contact: N/A

Data Release Frequency: No Update Planned

EDR Hist Auto: EDR Exclusive Historical Auto Stations

EDR has searched selected national collections of business directories and has collected listings of potential gas station/filling station/service station sites that were available to EDR researchers. EDR's review was limited to those categories of sources that might, in EDR's opinion, include gas station/filling station/service station establishments. The categories reviewed included, but were not limited to gas, gas station, gasoline station, filling station, auto, automobile repair, auto service station, service station, etc. This database falls within a category of information EDR classifies as "High Risk Historical Records", or HRHR. EDR's HRHR effort presents unique and sometimes proprietary data about past sites and operations that typically create environmental concerns, but may not show up in current government records searches.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A Number of Days to Update: N/A Source: EDR, Inc. Telephone: N/A Last EDR Contact: N/A

Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

EDR Hist Cleaner: EDR Exclusive Historical Cleaners

EDR has searched selected national collections of business directories and has collected listings of potential dry cleaner sites that were available to EDR researchers. EDR's review was limited to those categories of sources that might, in EDR's opinion, include dry cleaning establishments. The categories reviewed included, but were not limited to dry cleaners, cleaners, laundry, laundromat, cleaning/laundry, wash & dry etc. This database falls within a category of information EDR classifies as "High Risk Historical Records", or HRHR. EDR's HRHR effort presents unique and sometimes proprietary data about past sites and operations that typically create environmental concerns, but may not show up in current government records searches.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A Number of Days to Update: N/A Source: EDR, Inc. Telephone: N/A Last EDR Contact: N/A

Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

EDR RECOVERED GOVERNMENT ARCHIVES

Exclusive Recovered Govt. Archives

RGA HWS: Recovered Government Archive State Hazardous Waste Facilities List

The EDR Recovered Government Archive State Hazardous Waste database provides a list of SHWS incidents derived from historical databases and includes many records that no longer appear in current government lists. Compiled from Records formerly available from the Department of Environmental Quality in Oregon.

Date of Government Version: N/A
Date Data Arrived at EDR: 07/01/2013
Date Made Active in Reports: 01/03/2014
Number of Days to Update: 186

Source: Department of Environmental Quality

Telephone: N/A

Last EDR Contact: 06/01/2012 Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

RGA LF: Recovered Government Archive Solid Waste Facilities List

The EDR Recovered Government Archive Landfill database provides a list of landfills derived from historical databases and includes many records that no longer appear in current government lists. Compiled from Records formerly available from the Department of Environmental Quality in Oregon.

Date of Government Version: N/A
Date Data Arrived at EDR: 07/01/2013
Date Made Active in Reports: 01/13/2014
Number of Days to Update: 196

Source: Department of Environmental Quality

Telephone: N/A

Last EDR Contact: 06/01/2012 Next Scheduled EDR Contact: N/A Data Release Frequency: Varies

RGA LUST: Recovered Government Archive Leaking Underground Storage Tank

The EDR Recovered Government Archive Leaking Underground Storage Tank database provides a list of LUST incidents derived from historical databases and includes many records that no longer appear in current government lists. Compiled from Records formerly available from the Department of Environmental Quality in Oregon.

Date of Government Version: N/A
Date Data Arrived at EDR: 07/01/2013
Date Made Active in Reports: 12/27/2013
Number of Days to Update: 179

Telephone: N/A
Last EDR Contact: 06/01/2012
Next Scheduled EDR Contact: N/A
Data Release Frequency: Varies

Source: Department of Environmental Quality

OTHER DATABASE(S)

Depending on the geographic area covered by this report, the data provided in these specialty databases may or may not be complete. For example, the existence of wetlands information data in a specific report does not mean that all wetlands in the area covered by the report are included. Moreover, the absence of any reported wetlands information does not necessarily mean that wetlands do not exist in the area covered by the report.

NY MANIFEST: Facility and Manifest Data

Manifest is a document that lists and tracks hazardous waste from the generator through transporters to a TSD facility.

Date of Government Version: 07/01/2018 Date Data Arrived at EDR: 08/01/2018 Date Made Active in Reports: 08/31/2018

Number of Days to Update: 30

Source: Department of Environmental Conservation

Telephone: 518-402-8651 Last EDR Contact: 10/31/2018

Next Scheduled EDR Contact: 02/11/2019 Data Release Frequency: Quarterly

WI MANIFEST: Manifest Information

Hazardous waste manifest information.

Date of Government Version: 12/31/2017 Date Data Arrived at EDR: 06/15/2018 Date Made Active in Reports: 07/09/2018

Number of Days to Update: 24

Source: Department of Natural Resources

Telephone: N/A

Last EDR Contact: 09/06/2018

Next Scheduled EDR Contact: 12/24/2018 Data Release Frequency: Annually

Oil/Gas Pipelines

Source: PennWell Corporation

Petroleum Bundle (Crude Oil, Refined Products, Petrochemicals, Gas Liquids (LPG/NGL), and Specialty Gases (Miscellaneous)) N = Natural Gas Bundle (Natural Gas, Gas Liquids (LPG/NGL), and Specialty Gases (Miscellaneous)). This map includes information copyrighted by PennWell Corporation. This information is provided on a best effort basis and PennWell Corporation does not guarantee its accuracy nor warrant its fitness for any particular purpose. Such information has been reprinted with the permission of PennWell.

Electric Power Transmission Line Data

Source: PennWell Corporation

This map includes information copyrighted by PennWell Corporation. This information is provided on a best effort basis and PennWell Corporation does not guarantee its accuracy nor warrant its fitness for any particular purpose. Such information has been reprinted with the permission of PennWell.

Sensitive Receptors: There are individuals deemed sensitive receptors due to their fragile immune systems and special sensitivity to environmental discharges. These sensitive receptors typically include the elderly, the sick, and children. While the location of all sensitive receptors cannot be determined, EDR indicates those buildings and facilities - schools, daycares, hospitals, medical centers, and nursing homes - where individuals who are sensitive receptors are likely to be located.

AHA Hospitals:

Source: American Hospital Association, Inc.

Telephone: 312-280-5991

The database includes a listing of hospitals based on the American Hospital Association's annual survey of hospitals.

Medical Centers: Provider of Services Listing

Source: Centers for Medicare & Medicaid Services

Telephone: 410-786-3000

A listing of hospitals with Medicare provider number, produced by Centers of Medicare & Medicaid Services,

a federal agency within the U.S. Department of Health and Human Services.

Nursing Homes

Source: National Institutes of Health

Telephone: 301-594-6248

Information on Medicare and Medicaid certified nursing homes in the United States.

Public Schools

Source: National Center for Education Statistics

Telephone: 202-502-7300

The National Center for Education Statistics' primary database on elementary

and secondary public education in the United States. It is a comprehensive, annual, national statistical database of all public elementary and secondary schools and school districts, which contains data that are comparable across all states.

Private Schools

Source: National Center for Education Statistics

Telephone: 202-502-7300

The National Center for Education Statistics' primary database on private school locations in the United States.

Daycare Centers: Child Care Listings Source: Employment Department Telephone: 503-947-1420

Flood Zone Data: This data was obtained from the Federal Emergency Management Agency (FEMA). It depicts 100-year and 500-year flood zones as defined by FEMA. It includes the National Flood Hazard Layer (NFHL) which incorporates Flood Insurance Rate Map (FIRM) data and Q3 data from FEMA in areas not covered by NFHL.

Source: FEMA

Telephone: 877-336-2627

Date of Government Version: 2003, 2015

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002, 2005 and 2010 from the U.S. Fish and Wildlife Service.

State Wetlands Data: Wetlands Inventory Data Source: Oregon Geospatial Enterprise Office

Telephone: 503-378-2166

Current USGS 7.5 Minute Topographic Map Source: U.S. Geological Survey

STREET AND ADDRESS INFORMATION

© 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

GEOCHECK®-PHYSICAL SETTING SOURCE ADDENDUM

TARGET PROPERTY ADDRESS

SHIMANEK COVERED BRIDGE RICHARDSON GAP DRIVE/SHIMANEK BRIDGE DR SCIO, OR 97374

TARGET PROPERTY COORDINATES

Latitude (North): 44.715588 - 44° 42' 56.12" Longitude (West): 122.80451 - 122° 48' 16.24"

Universal Tranverse Mercator: Zone 10 UTM X (Meters): 515484.1 UTM Y (Meters): 4951158.5

Elevation: 351 ft. above sea level

USGS TOPOGRAPHIC MAP

Target Property Map: 6068622 SCIO, OR

Version Date: 2014

EDR's GeoCheck Physical Setting Source Addendum is provided to assist the environmental professional in forming an opinion about the impact of potential contaminant migration.

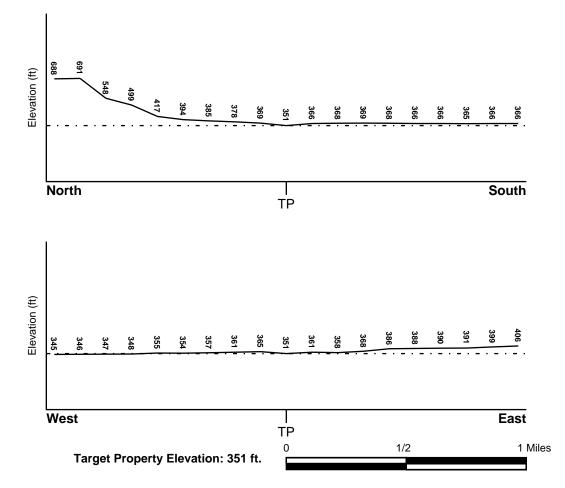
Assessment of the impact of contaminant migration generally has two principle investigative components:

- 1. Groundwater flow direction, and
- 2. Groundwater flow velocity.

Groundwater flow direction may be impacted by surface topography, hydrology, hydrogeology, characteristics of the soil, and nearby wells. Groundwater flow velocity is generally impacted by the nature of the geologic strata.

GROUNDWATER FLOW DIRECTION INFORMATION

Groundwater flow direction for a particular site is best determined by a qualified environmental professional using site-specific well data. If such data is not reasonably ascertainable, it may be necessary to rely on other sources of information, such as surface topographic information, hydrologic information, hydrogeologic data collected on nearby properties, and regional groundwater flow information (from deep aquifers).


TOPOGRAPHIC INFORMATION

Surface topography may be indicative of the direction of surficial groundwater flow. This information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

TARGET PROPERTY TOPOGRAPHY

General Topographic Gradient: General SSE

SURROUNDING TOPOGRAPHY: ELEVATION PROFILES

Source: Topography has been determined from the USGS 7.5' Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified.

HYDROLOGIC INFORMATION

Surface water can act as a hydrologic barrier to groundwater flow. Such hydrologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Refer to the Physical Setting Source Map following this summary for hydrologic information (major waterways and bodies of water).

FEMA FLOOD ZONE

Flood Plain Panel at Target Property FEMA Source Type

41043C0260G FEMA FIRM Flood data

Additional Panels in search area: FEMA Source Type

41043C0255G FEMA FIRM Flood data 41043C0254G FEMA FIRM Flood data

NATIONAL WETLAND INVENTORY

NWI Quad at Target Property Data Coverage

SCIO YES - refer to the Overview Map and Detail Map

HYDROGEOLOGIC INFORMATION

Hydrogeologic information obtained by installation of wells on a specific site can often be an indicator of groundwater flow direction in the immediate area. Such hydrogeologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

AQUIFLOW®

Search Radius: 1.000 Mile.

EDR has developed the AQUIFLOW Information System to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted by environmental professionals to regulatory authorities at select sites and has extracted the date of the report, groundwater flow direction as determined hydrogeologically, and the depth to water table.

LOCATION GENERAL DIRECTION

MAP ID FROM TP GROUNDWATER FLOW

Not Reported

GROUNDWATER FLOW VELOCITY INFORMATION

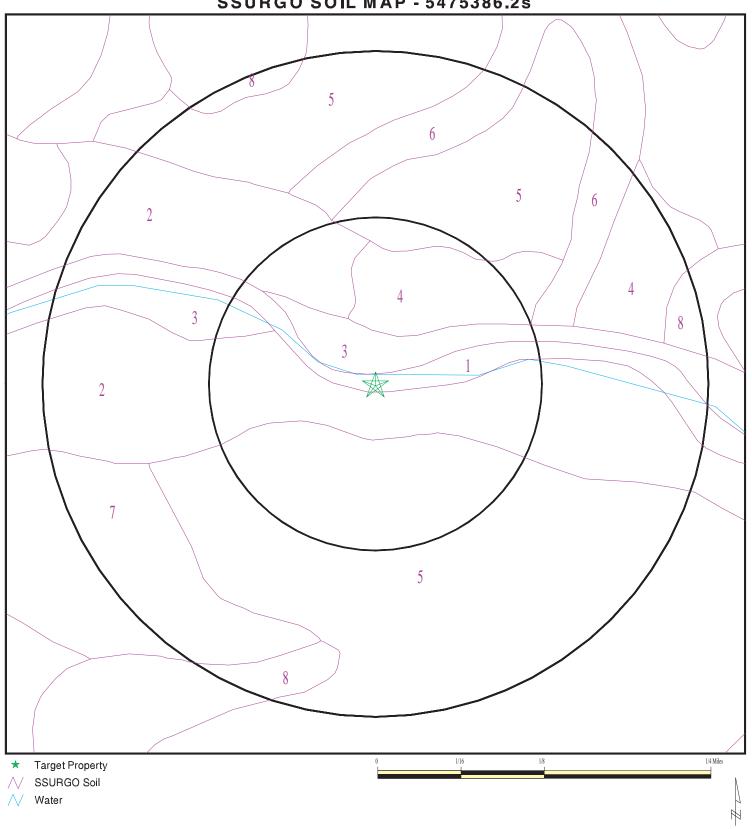
Groundwater flow velocity information for a particular site is best determined by a qualified environmental professional using site specific geologic and soil strata data. If such data are not reasonably ascertainable, it may be necessary to rely on other sources of information, including geologic age identification, rock stratigraphic unit and soil characteristics data collected on nearby properties and regional soil information. In general, contaminant plumes move more quickly through sandy-gravelly types of soils than silty-clayey types of soils.

GEOLOGIC INFORMATION IN GENERAL AREA OF TARGET PROPERTY

Geologic information can be used by the environmental professional in forming an opinion about the relative speed at which contaminant migration may be occurring.

ROCK STRATIGRAPHIC UNIT

GEOLOGIC AGE IDENTIFICATION


Era: Cenozoic Category: Continental Deposits

System: Tertiary Series: Oligocene

Code: Toc (decoded above as Era, System & Series)

Geologic Age and Rock Stratigraphic Unit Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - a digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

SSURGO SOIL MAP - 5475386.2s

SITE NAME: Shimanek Covered Bridge ADDRESS: Richardson Gap Drive/Shimanek Bridge Dr

Scio OR 97374 44.715588 / 122.80451 LAT/LONG:

CLIENT: Cascade Earth Sciences CONTACT: Jessica Penetar INQUIRY#: 5475386.2s

DATE: November 05, 2018 2:57 pm

DOMINANT SOIL COMPOSITION IN GENERAL AREA OF TARGET PROPERTY

The U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS) leads the National Cooperative Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. The following information is based on Soil Conservation Service SSURGO data.

Soil Map ID: 1

Soil Component Name: Water

Soil Surface Texture:

Hydrologic Group: Not reported

Soil Drainage Class: Hydric Status: Unknown

Corrosion Potential - Uncoated Steel: Not Reported

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

No Layer Information available.

Soil Map ID: 2

Soil Component Name: McBee

Soil Surface Texture: silty clay loam

Hydrologic Group: Class C - Slow infiltration rates. Soils with layers impeding downward

movement of water, or soils with moderately fine or fine textures.

Soil Drainage Class: Moderately well drained

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: Moderate

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 76 inches

	Soil Layer Information						
	Вои	Boundary		Classi	fication	Saturated hydraulic	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	
1	0 inches	18 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14 Min: 4	Max: 7.3 Min: 6.1
2	18 inches	59 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14 Min: 4	Max: 7.3 Min: 6.1

Soil Map ID: 3

Soil Component Name: Fluvents

Soil Surface Texture: variable

Hydrologic Group: Class C - Slow infiltration rates. Soils with layers impeding downward

movement of water, or soils with moderately fine or fine textures.

Soil Drainage Class: Moderately well drained

Hydric Status: All hydric

Corrosion Potential - Uncoated Steel: Not Reported

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 46 inches

	Soil Layer Information						
Boundary Classification Saturated hydraulic							
Layer	Upper	Lower	Soil Texture Class	re Class AASHTO Group Unified Soil		conductivity	Soil Reaction (pH)
1	0 inches	59 inches	variable	Not reported	Not reported	Max: Min:	Max: Min:

Soil Map ID: 4

Soil Component Name: Chehalis

Soil Surface Texture: silty clay loam

Hydrologic Group: Class B - Moderate infiltration rates. Deep and moderately deep,

moderately well and well drained soils with moderately coarse

textures.

Soil Drainage Class: Well drained

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: Moderate

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

	Soil Layer Information						
	Bou	Boundary		Classi	fication	Saturated hydraulic	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Soil Reaction (pH)
1	0 inches	16 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), silt.	Max: 14 Min: 4	Max: 7.3 Min: 5.6
2	16 inches	59 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), silt.	Max: 14 Min: 4	Max: 7.3 Min: 5.6

Soil Map ID: 5

Soil Component Name: Conser

Soil Surface Texture: silty clay loam

Hydrologic Group: Class D - Very slow infiltration rates. Soils are clayey, have a high

water table, or are shallow to an impervious layer.

Soil Drainage Class: Poorly drained

Hydric Status: All hydric

Corrosion Potential - Uncoated Steel: Moderate

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

Soil Layer Information							
	Bou	Boundary	Classi	fication	Saturated hydraulic		
Layer	Layer Upper		Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Soil Reaction (pH)
1	0 inches	16 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit 50% or more), Fat Clay.	Max: 1.4 Min: 0.42	Max: 6.5 Min: 5.6
2	16 inches	63 inches	silty clay	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit 50% or more), Fat Clay.	Max: 1.4 Min: 0.42	Max: 6.5 Min: 5.6

Soil Map ID: 6

Soil Component Name: Courtney

Soil Surface Texture: gravelly silty clay loam

Hydrologic Group: Class D - Very slow infiltration rates. Soils are clayey, have a high

water table, or are shallow to an impervious layer.

Soil Drainage Class: Poorly drained

Hydric Status: All hydric

Corrosion Potential - Uncoated Steel: Moderate

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

	Soil Layer Information						
	Bou	ındary		Classi	fication	Saturated hydraulic conductivity micro m/sec	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil		Soil Reaction (pH)
1	0 inches	16 inches	gravelly silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	COARSE-GRAINED SOILIS, Gravels, Clean Gravels, Well-graded gravel.	Max: 141 Min: 42	Max: 7.3 Min: 5.6
2	16 inches	33 inches	gravelly clay	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	COARSE-GRAINED SOILIS, Gravels, Clean Gravels, Well-graded gravel.	Max: 141 Min: 42	Max: 7.3 Min: 5.6
3	33 inches	48 inches	very gravelly clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	COARSE-GRAINED SOILIS, Gravels, Clean Gravels, Well-graded gravel.	Max: 141 Min: 42	Max: 7.3 Min: 5.6
4	48 inches	59 inches	extremely gravelly sand	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	COARSE-GRAINED SOILIS, Gravels, Clean Gravels, Well-graded gravel.	Max: 141 Min: 42	Max: 7.3 Min: 5.6

Soil Map ID: 7

Soil Component Name: Coburg

Soil Surface Texture: silty clay loam

Hydrologic Group: Class C - Slow infiltration rates. Soils with layers impeding downward

movement of water, or soils with moderately fine or fine textures.

Soil Drainage Class: Moderately well drained

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: Moderate

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 61 inches

	Soil Layer Information						
	Вои	Boundary		Classi	fication	Saturated hydraulic	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil	conductivity micro m/sec	Soil Reaction (pH)
1	0 inches	16 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 4 Min: 1.4	Max: 7.3 Min: 6.1
2	16 inches	61 inches	silty clay	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 4 Min: 1.4	Max: 7.3 Min: 6.1

Soil Map ID: 8

Soil Component Name: Awbrig

Soil Surface Texture: silty clay loam

Hydrologic Group: Class D - Very slow infiltration rates. Soils are clayey, have a high

water table, or are shallow to an impervious layer.

Soil Drainage Class: Poorly drained

Hydric Status: All hydric

Corrosion Potential - Uncoated Steel: Moderate

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

	Soil Layer Information							
Boundary Classification Saturated hydraulic								
Layer	Upper	Lower	Soil Texture Class	ass AASHTO Group Unified Soil conductivity S		Soil Reaction (pH)		
1	0 inches	11 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit 50% or more), Fat Clay.	Max: 4 Min: 1.4	Max: 7.3 Min: 6.6	

	Soil Layer Information						
	Вои	Boundary Classification Upper Lower Soil Texture Class AASHTO Group Unified Soil		Classi	fication	Saturated hydraulic	
Layer	Upper			Unified Soil	conductivity micro m/sec		
2	11 inches	31 inches	clay	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit 50% or more), Fat Clay.	Max: 4 Min: 1.4	Max: 7.3 Min: 6.6
3	31 inches	59 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit 50% or more), Fat Clay.	Max: 4 Min: 1.4	Max: 7.3 Min: 6.6

LOCAL / REGIONAL WATER AGENCY RECORDS

EDR Local/Regional Water Agency records provide water well information to assist the environmental professional in assessing sources that may impact ground water flow direction, and in forming an opinion about the impact of contaminant migration on nearby drinking water wells.

WELL SEARCH DISTANCE INFORMATION

DATABASE SEARCH DISTANCE (miles)

Federal USGS 1.000

Federal FRDS PWS Nearest PWS within 0.001 miles

State Database 1.000

FEDERAL USGS WELL INFORMATION

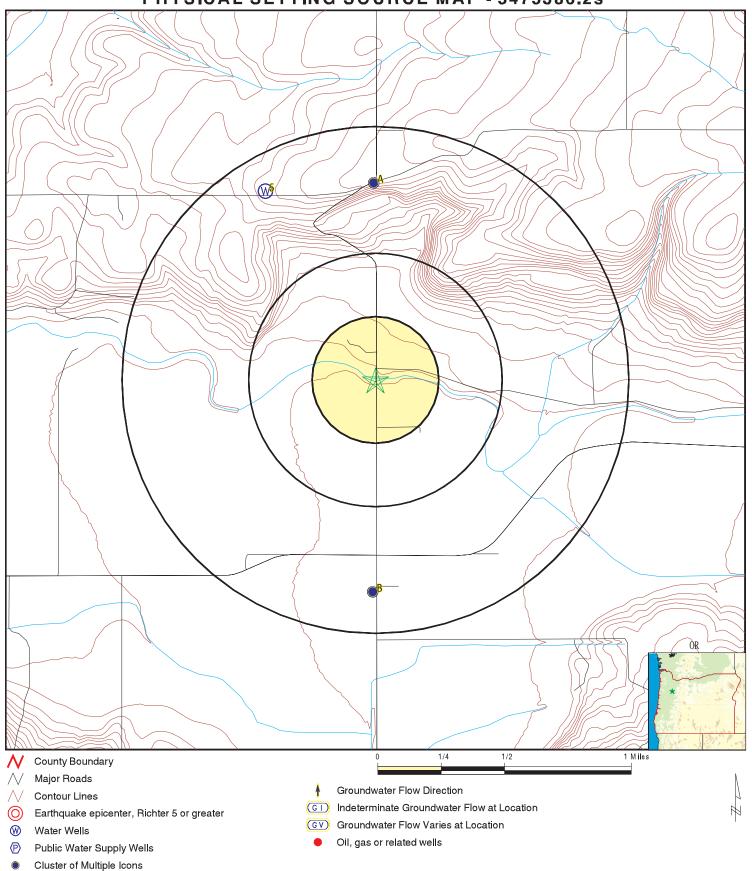
MAP ID WELL ID FROM TP

A1 USGS40000990728 1/2 - 1 Mile North
B3 USGS40000990638 1/2 - 1 Mile South

FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION

MAP ID WELL ID FROM TP

No PWS System Found


Note: PWS System location is not always the same as well location.

GEOCHECK[®] - PHYSICAL SETTING SOURCE SUMMARY

STATE DATABASE WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
A2	ORW600000004584	1/2 - 1 Mile North
B4	ORW60000003777	1/2 - 1 Mile South
5	ORW60000007397	1/2 - 1 Mile NNW

PHYSICAL SETTING SOURCE MAP - 5475386.2s

SITE NAME: Shimanek Covered Bridge ADDRESS: Richardson Gap Drive/Shimanek Bridge Dr

Scio OR 97374

44.715588 / 122.80451 LAT/LONG:

Cascade Earth Sciences

CLIENT: Cascade Earth S CONTACT: Jessica Penetar

INQUIRY #: 5475386.2s

DATE: November 05, 2018 2:57 pm

GEOCHECK®- PHYSICAL SETTING SOURCE MAP FINDINGS

Map ID Direction Distance

Elevation Database EDR ID Number

A1 North 1/2 - 1 Mile

FED USGS USGS40000990728

Higher

Organization ID: USGS-OR Organization Name: USGS Oregon Water Science Center

Monitor Location: 10S/01W-04DAD Type: Well HUC: 17090006 Description: Not Reported Drainage Area: Not Reported Drainage Area Units: Not Reported Contrib Drainage Area: Not Reported Contrib Drainage Area Unts: Not Reported Aquifer: Not Reported Formation Type: Not Reported Aquifer Type: Not Reported Construction Date: 19570101

Well Depth: 139 Well Depth Units: ft

Well Hole Depth: Not Reported Well Hole Depth Units: Not Reported

Ground water levels, Number of Measurements: 1 Level reading date: 1957-12-01 Feet below surface: 48.00 Feet to sea level: Not Reported

Note: Not Reported

A2
North
OR WELLS
ORW60000004584

1/2 - 1 Mile Higher

Higher

Well Log ID: LINN 3605 Last Update: 01/01/1990

Well Tag: 0 State Obs Well #: 0

Observation Well: Not Reported Recorder Well: Not Reported

Obs Well Flag: Not Reported Surface Elevation: 675

Organization ID: USGS-OR Organization Name: USGS Oregon Water Science Center

Monitor Location: 10S/01W-16ADA Type: Well

Description:

NAWQA data entry com.&ver.09/08/1999 Hinkle SR

HUC:

17090006

Drainage Area:

Not Reported

Not Reported

Not Reported

Contrib Drainage Area Unts: Not Reported

Aquifer: Willamette Lowland basin-fill aquifers

Formation Type: Quaternary Alluvium Aquifer Type: Unconfined single aquifer

Construction Date: 19730807 Well Depth: 50
Well Depth Units: ft Well Hole Depth: 50

Well Hole Depth Units: ft

Ground water levels, Number of Measurements: 6 Level reading date: 2004-06-17

Feet below surface: 2.24 Feet to sea level: Not Reported

Note: Not Reported

Level reading date: 2002-07-11 Feet below surface: 3.96

Feet to sea level: Not Reported Note: Not Reported

Level reading date: 1996-11-15 Feet below surface: 1.76

Feet to sea level: Not Reported Note: The site had been pumped recently.

GEOCHECK®-PHYSICAL SETTING SOURCE MAP FINDINGS

Level reading date: 1993-07-27 Feet below surface: 4.04

Feet to sea level: Not Reported Note: Not Reported

Level reading date: 1993-02-05 Feet below surface: 1.57

Feet to sea level: Not Reported Note: Not Reported

Level reading date: 1973-08-07 Feet below surface: 6.00

Feet to sea level: Not Reported Note: Not Reported

B4 South OR WELLS ORW60000003777

1/2 - 1 Mile Higher

Well Log ID: LINN 3778 Last Update: 01/01/1990

Well Tag: 0 State Obs Well #: 0

Observation Well: Noncurrent Recorder Well: Not Reported

Obs Well Flag: Other Obs Well, Noncurrent Surface Elevation: 365

5 NNW OR WELLS ORW600000007397 1/2 - 1 Mile

Higher

Well Log ID: LINN 295 Last Update: 10/25/2005

Well Tag: 0 State Obs Well #: 0

Observation Well: Noncurrent Recorder Well: Not Reported

Obs Well Flag: Other Obs Well, Noncurrent Surface Elevation: 630

GEOCHECK®- PHYSICAL SETTING SOURCE MAP FINDINGS RADON

AREA RADON INFORMATION

State Database: OR Radon

Radon Test Results

Zipcode	Num Tests	Maximum	Minimum	Average	# > 4 pCi/L
97374	4	1.7	1.2	1.4	0

Federal EPA Radon Zone for LINN County: 3

Note: Zone 1 indoor average level > 4 pCi/L.

: Zone 2 indoor average level >= 2 pCi/L and <= 4 pCi/L.

: Zone 3 indoor average level < 2 pCi/L.

Not Reported

PHYSICAL SETTING SOURCE RECORDS SEARCHED

TOPOGRAPHIC INFORMATION

USGS 7.5' Digital Elevation Model (DEM)

Source: United States Geologic Survey

EDR acquired the USGS 7.5' Digital Elevation Model in 2002 and updated it in 2006. The 7.5 minute DEM corresponds to the USGS 1:24,000- and 1:25,000-scale topographic quadrangle maps. The DEM provides elevation data with consistent elevation units and projection.

Current USGS 7.5 Minute Topographic Map Source: U.S. Geological Survey

HYDROLOGIC INFORMATION

Flood Zone Data: This data was obtained from the Federal Emergency Management Agency (FEMA). It depicts 100-year and 500-year flood zones as defined by FEMA. It includes the National Flood Hazard Layer (NFHL) which incorporates Flood Insurance Rate Map (FIRM) data and Q3 data from FEMA in areas not covered by NFHL.

Source: FEMA

Telephone: 877-336-2627

Date of Government Version: 2003, 2015

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002, 2005 and 2010 from the U.S. Fish and Wildlife Service.

State Wetlands Data: Wetlands Inventory Data Source: Oregon Geospatial Enterprise Office

Telephone: 503-378-2166

HYDROGEOLOGIC INFORMATION

AQUIFLOW^R Information System

Source: EDR proprietary database of groundwater flow information

EDR has developed the AQUIFLOW Information System (AIS) to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted to regulatory authorities at select sites and has extracted the date of the report, hydrogeologically determined groundwater flow direction and depth to water table information.

GEOLOGIC INFORMATION

Geologic Age and Rock Stratigraphic Unit

Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - A digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

STATSGO: State Soil Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS)

The U.S. Department of Agriculture's (USDA) Natural Resources Conservation Service (NRCS) leads the national Conservation Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps.

SSURGO: Soil Survey Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS)

Telephone: 800-672-5559

SSURGO is the most detailed level of mapping done by the Natural Resources Conservation Service, mapping scales generally range from 1:12,000 to 1:63,360. Field mapping methods using national standards are used to construct the soil maps in the Soil Survey Geographic (SSURGO) database. SSURGO digitizing duplicates the original soil survey maps. This level of mapping is designed for use by landowners, townships and county natural resource planning and management.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

LOCAL / REGIONAL WATER AGENCY RECORDS

FEDERAL WATER WELLS

PWS: Public Water Systems

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Public Water System data from the Federal Reporting Data System. A PWS is any water system which provides water to at least 25 people for at least 60 days annually. PWSs provide water from wells, rivers and other sources.

PWS ENF: Public Water Systems Violation and Enforcement Data

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Violation and Enforcement data for Public Water Systems from the Safe Drinking Water Information System (SDWIS) after August 1995. Prior to August 1995, the data came from the Federal Reporting Data System (FRDS).

USGS Water Wells: USGS National Water Inventory System (NWIS)

This database contains descriptive information on sites where the USGS collects or has collected data on surface water and/or groundwater. The groundwater data includes information on wells, springs, and other sources of groundwater.

STATE RECORDS

Water Well Data

Source: Department of Water Resources

Telephone: 503-986-0843

OTHER STATE DATABASE INFORMATION

Oil and Gas Well Locations

Source: Department of Geology and Mineral Industries

Telephone: 971-673-1540

A listing of oil and gas well locations in the state.

RADON

State Database: OR Radon Source: Oregon Health Services Telephone: 503-731-4272 Radon Levels in Orgeon

Area Radon Information

Source: USGS

Telephone: 703-356-4020

The National Radon Database has been developed by the U.S. Environmental Protection Agency

(USEPA) and is a compilation of the EPA/State Residential Radon Survey and the National Residential Radon Survey. The study covers the years 1986 - 1992. Where necessary data has been supplemented by information collected at private sources such as universities and research institutions.

EPA Radon Zones Source: EPA

Telephone: 703-356-4020

Sections 307 & 309 of IRAA directed EPA to list and identify areas of U.S. with the potential for elevated indoor

radon levels.

OTHER

Airport Landing Facilities: Private and public use landing facilities

Source: Federal Aviation Administration, 800-457-6656

Epicenters: World earthquake epicenters, Richter 5 or greater

Source: Department of Commerce, National Oceanic and Atmospheric Administration

Earthquake Fault Lines: The fault lines displayed on EDR's Topographic map are digitized quaternary faultlines, prepared

in 1975 by the United State Geological Survey

PHYSICAL SETTING SOURCE RECORDS SEARCHED

STREET AND ADDRESS INFORMATION

© 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

Shimanek Covered Bridge Richardson Gap Drive/Shimanek Bridge Dr Scio, OR 97374

Inquiry Number: 5475386.3

November 05, 2018

Certified Sanborn® Map Report

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

Certified Sanborn® Map Report

Site Name: Client Name:

Shimanek Covered Bridge Richardson Gap Drive/Shimane

Scio, OR 97374

EDR Inquiry # 5475386.3

Cascade Earth Sciences 3511 Pacific Boulevard SW Albany, OR 97321

Contact: Jessica Penetar

11/05/18

The Sanborn Library has been searched by EDR and maps covering the target property location as provided by Cascade Earth Sciences were identified for the years listed below. The Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by the Sanborn Library LLC, the copyright holder for the collection. Results can be authenticated by visiting www.edrnet.com/sanborn.

The Sanborn Library is continually enhanced with newly identified map archives. This report accesses all maps in the collection as of the day this report was generated.

Certified Sanborn Results:

Certification # 08FB-4552-8DCC

PO # P201823036

Project Shimanek Covered Bridge

UNMAPPED PROPERTY

This report certifies that the complete holdings of the Sanborn Library, LLC collection have been searched based on client supplied target property information, and fire insurance maps covering the target property were not found.

Sanborn® Library search results

Certification #: 08FB-4552-8DCC

The Sanborn Library includes more than 1.2 million fire insurance maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow and others which track historical property usage in approximately 12,000 American cities and towns. Collections searched:

✓ Library of Congress

University Publications of America

✓ EDR Private Collection

The Sanborn Library LLC Since 1866™

Limited Permission To Make Copies

Cascade Earth Sciences (the client) is permitted to make up to FIVE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2018 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

page 2

Shimanek Covered Bridge Richardson Gap Drive/Shimanek Bridge Dr Scio, OR 97374

Inquiry Number: 5475386.4

November 05, 2018

EDR Historical Topo Map Report

with QuadMatch™

EDR Historical Topo Map Report

11/05/18

Site Name: Client Name:

Shimanek Covered Bridge Richardson Gap Drive/Shimane

Scio, OR 97374

EDR Inquiry # 5475386.4

Cascade Earth Sciences
3511 Pacific Boulevard SW

Albany, OR 97321

Contact: Jessica Penetar

EDR Topographic Map Library has been searched by EDR and maps covering the target property location as provided by Cascade Earth Sciences were identified for the years listed below. EDR's Historical Topo Map Report is designed to assist professionals in evaluating potential liability on a target property resulting from past activities. EDRs Historical Topo Map Report includes a search of a collection of public and private color historical topographic maps, dating back to the late 1800s.

Coordinates	:
Latitude:	44.715588 44° 42' 56" North
overed Bridge Longitude:	-122.80451 -122° 48' 16" West
UTM Zone:	Zone 10 North
UTM X Meters	s: 515483.64
UTM Y Meters	s: 4951375.21
Elevation:	350.56' above sea level
	Latitude: vered Bridge Longitude: UTM Zone: UTM X Meters UTM Y Meters

Maps Provided:

2014

1986

1969

1957

1944

1924

1922 1921

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2018 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

Topo Sheet Key

This EDR Topo Map Report is based upon the following USGS topographic map sheets.

2014 Source Sheets

Scio 2014 7.5-minute, 24000

1986 Source Sheets

Scio 1986 7.5-minute, 24000 Aerial Photo Revised 1982

1969 Source Sheets

Scio 1969 7.5-minute, 24000 Aerial Photo Revised 1967

1957 Source Sheets

Lebanon 1957 15-minute, 62500

Topo Sheet Key

This EDR Topo Map Report is based upon the following USGS topographic map sheets.

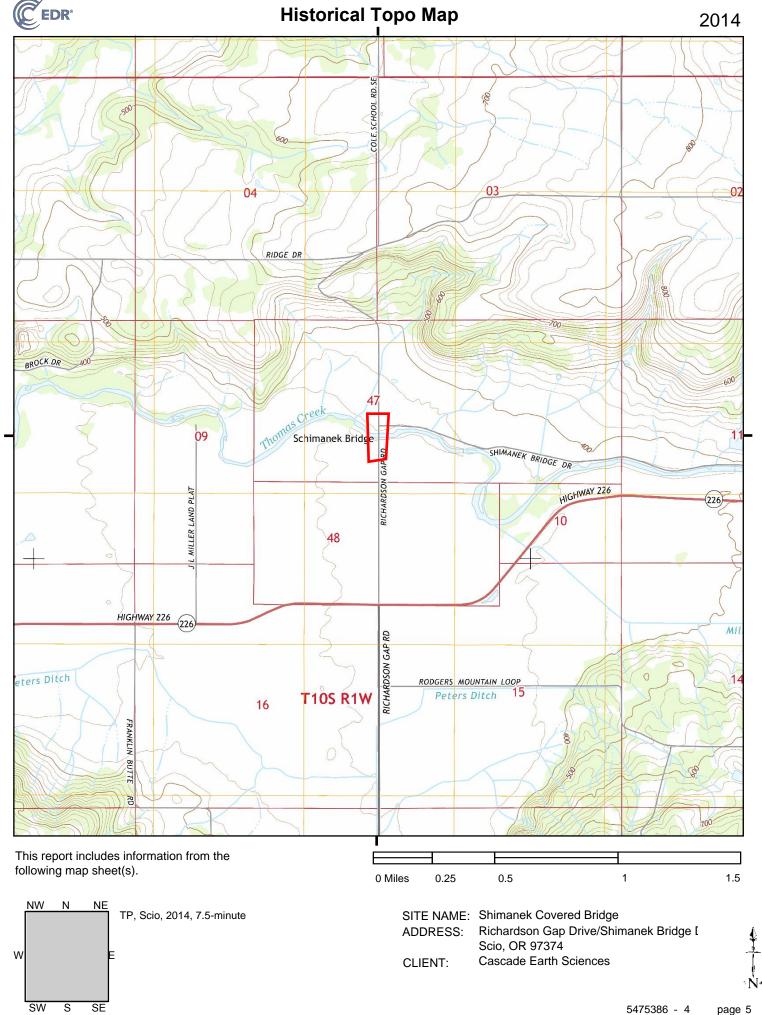
1944 Source Sheets

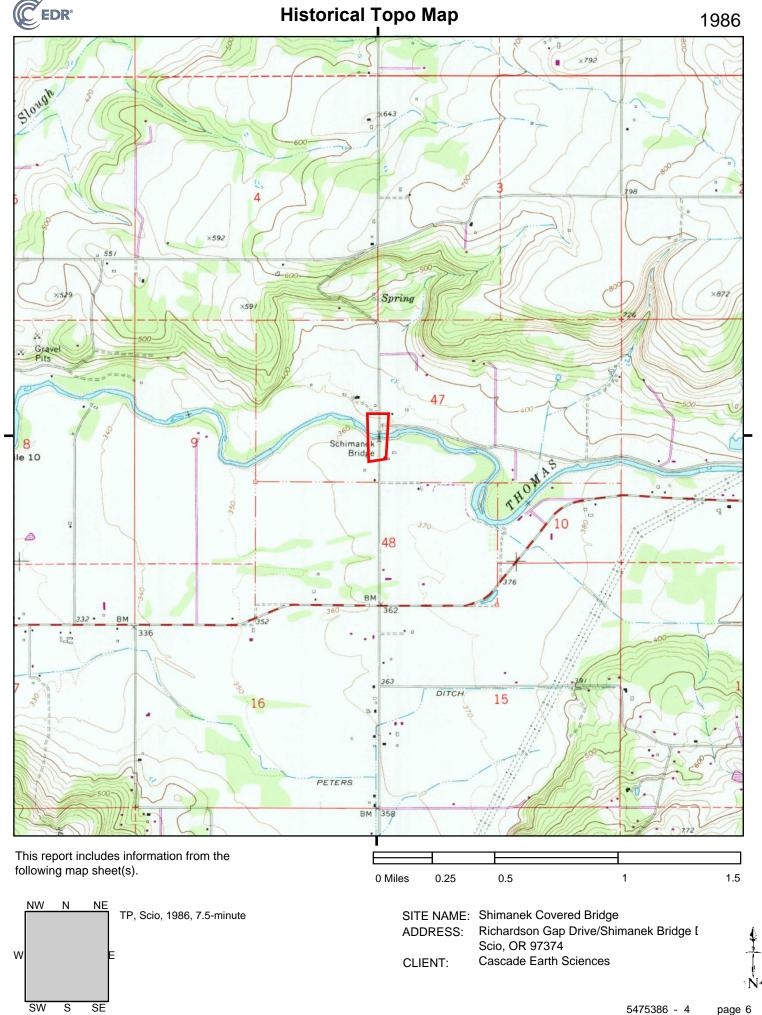
LEBANON 1944 15-minute, 50000

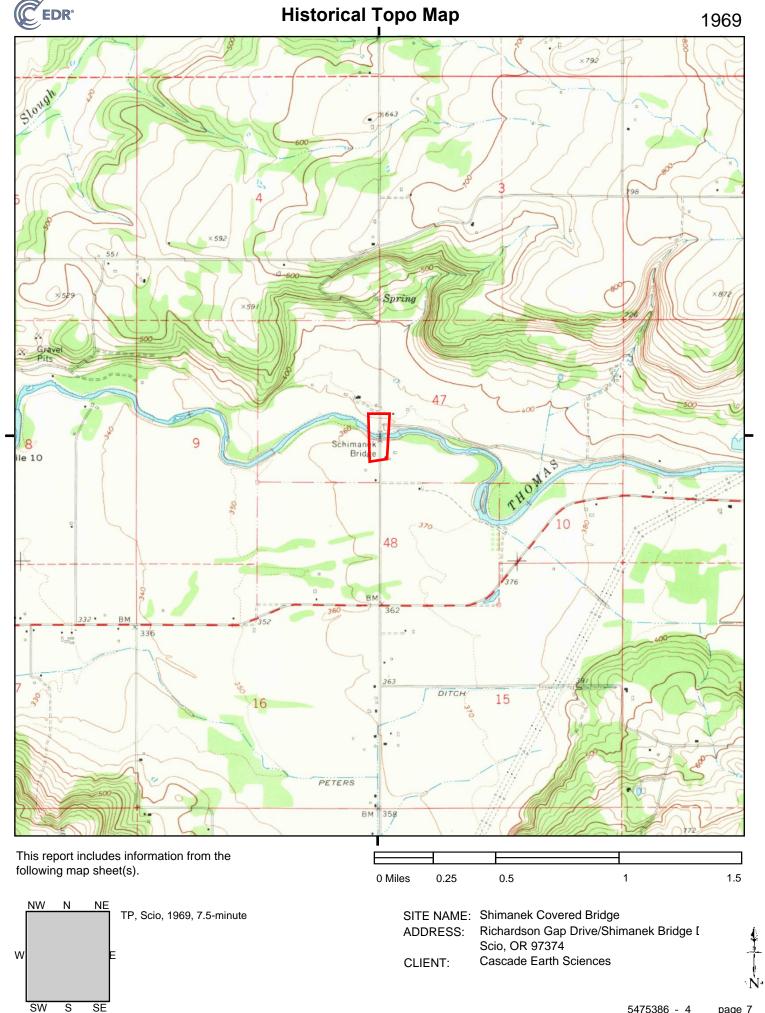
1924 Source Sheets

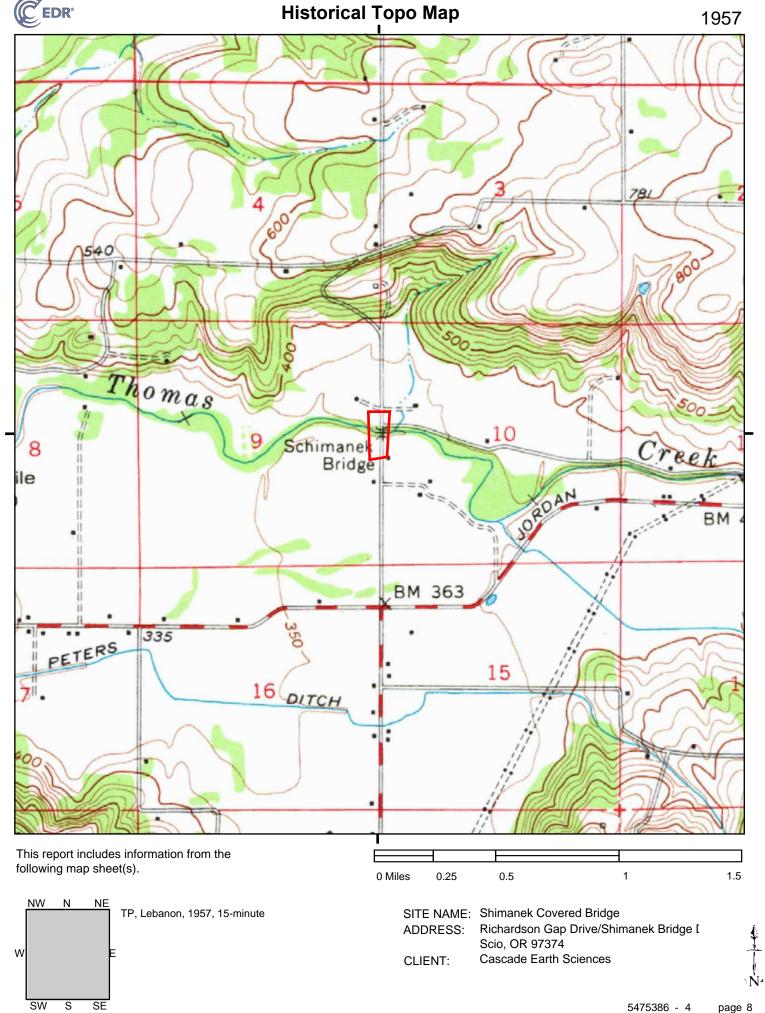
Lebanon 1924 15-minute, 62500

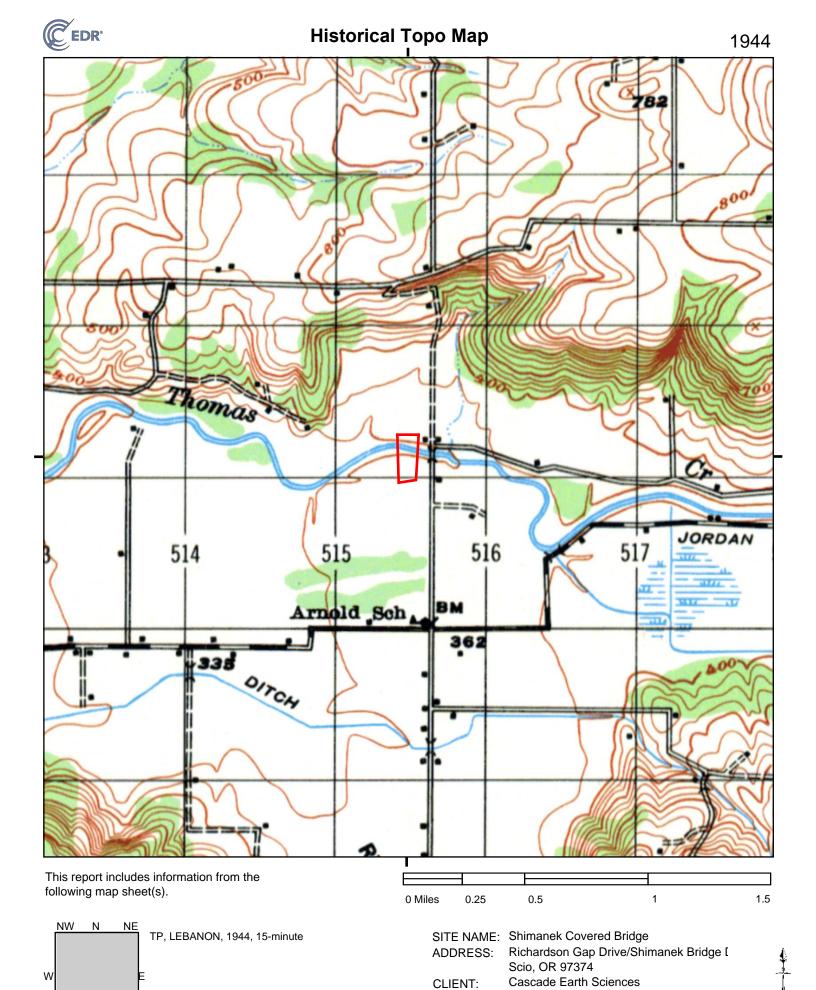
1922 Source Sheets

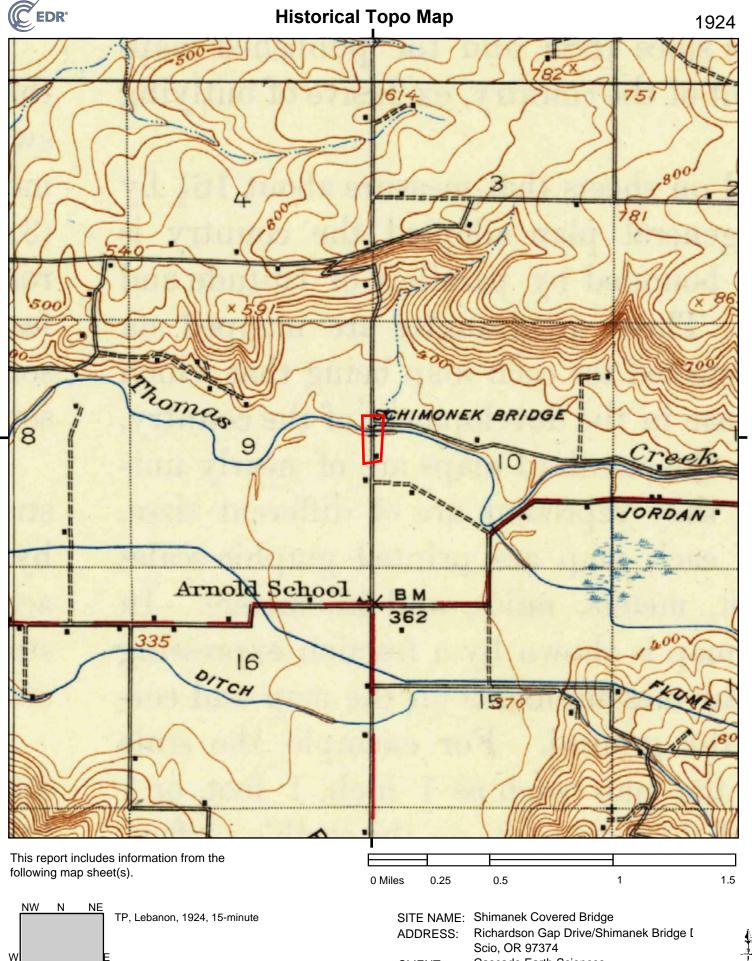


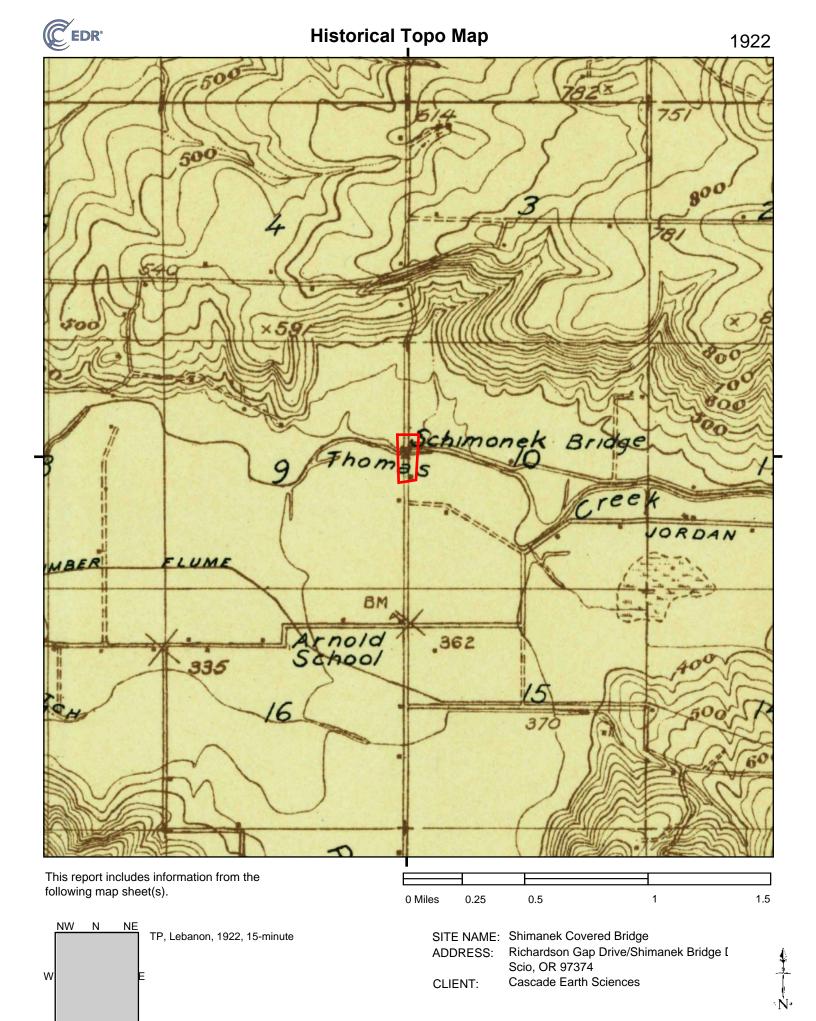

Lebanon 1922 15-minute, 48000

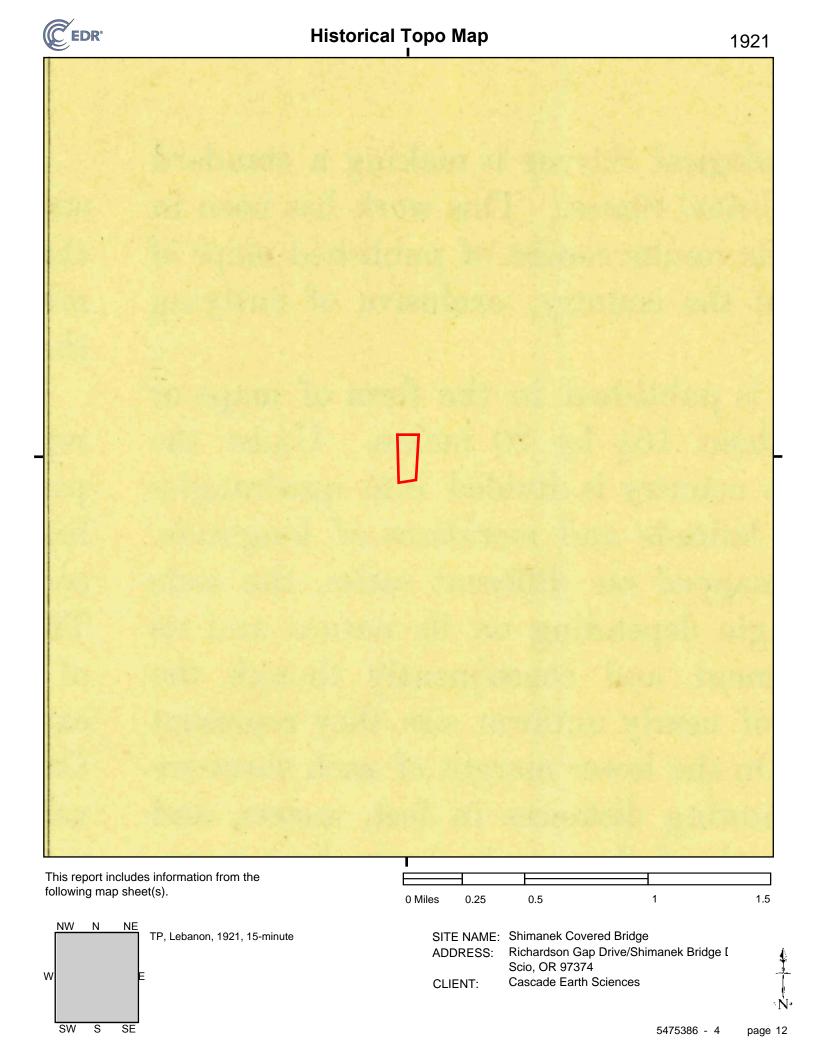

1921 Source Sheets




Lebanon 1921 15-minute, 62500







page 10

SW

Shimanek Covered Bridge

Richardson Gap Drive/Shimanek Bridge Dr Scio, OR 97374

Inquiry Number: 5475386.8

November 06, 2018

The EDR Aerial Photo Decade Package

EDR Aerial Photo Decade Package

11/06/18

Site Name: Client Name:

Shimanek Covered Bridge Richardson Gap Drive/Shimane

Scio, OR 97374

EDR Inquiry # 5475386.8

Cascade Earth Sciences 3511 Pacific Boulevard SW

Albany, OR 97321

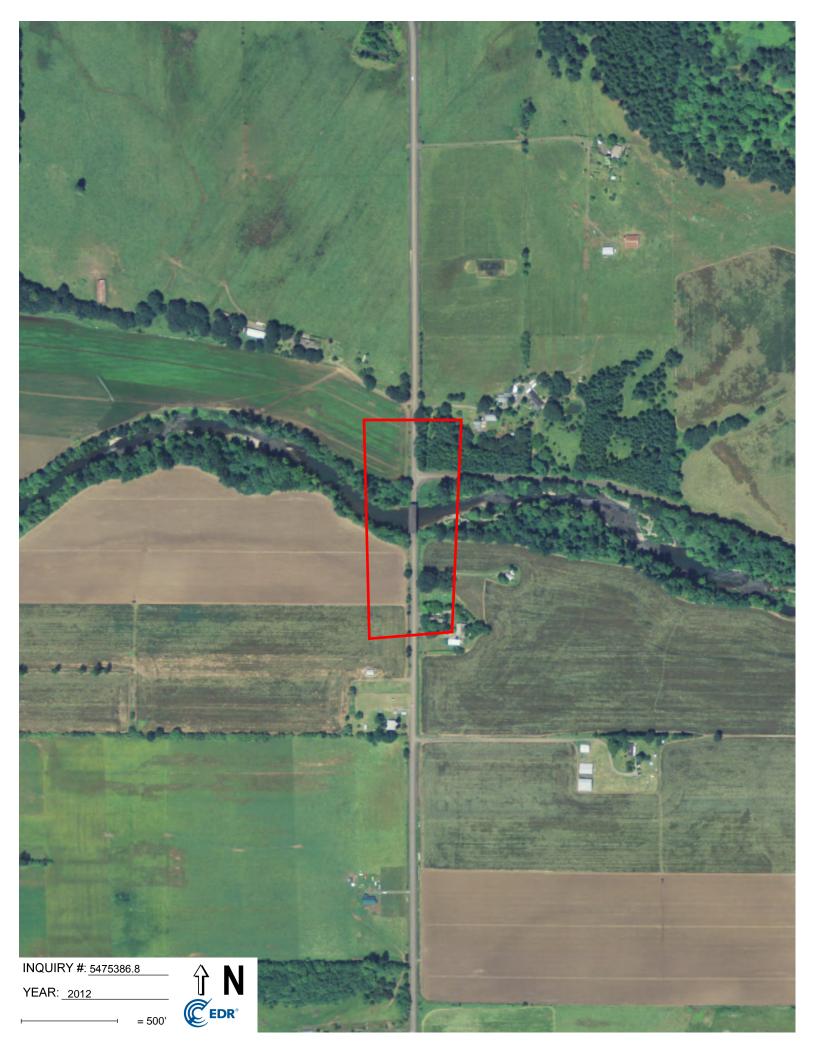
Contact: Jessica Penetar

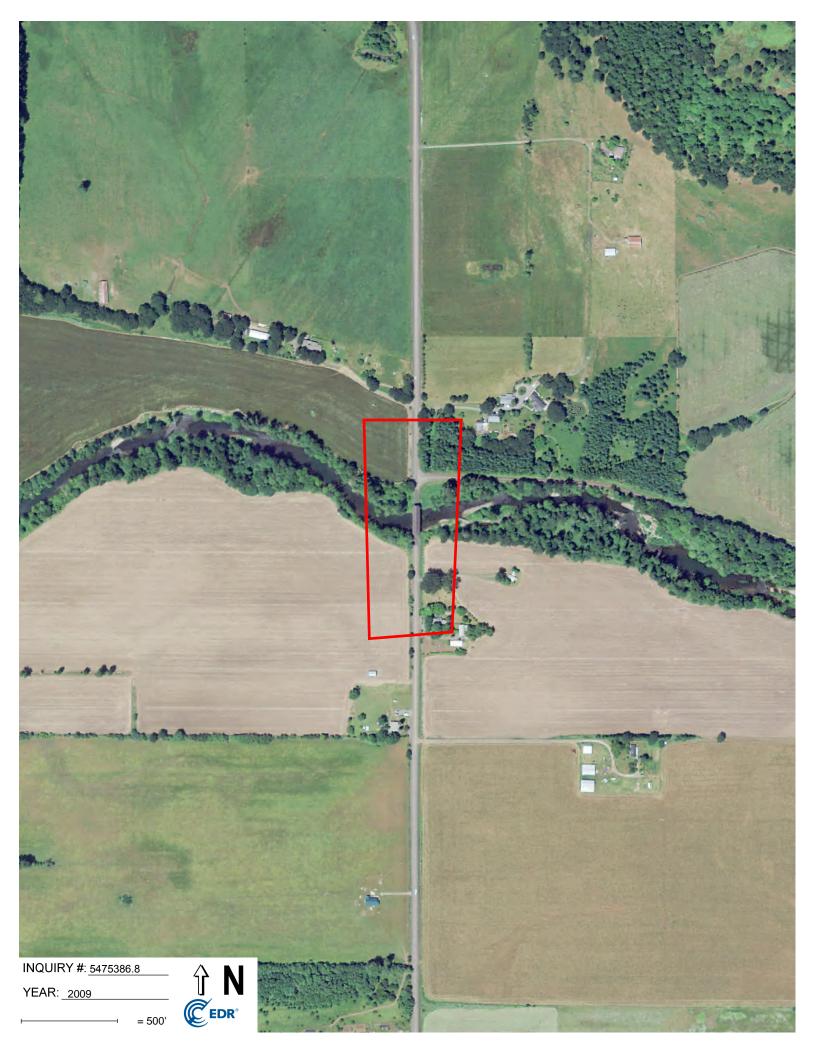
Environmental Data Resources, Inc. (EDR) Aerial Photo Decade Package is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's professional researchers provide digitally reproduced historical aerial photographs, and when available, provide one photo per decade.

Search Results:

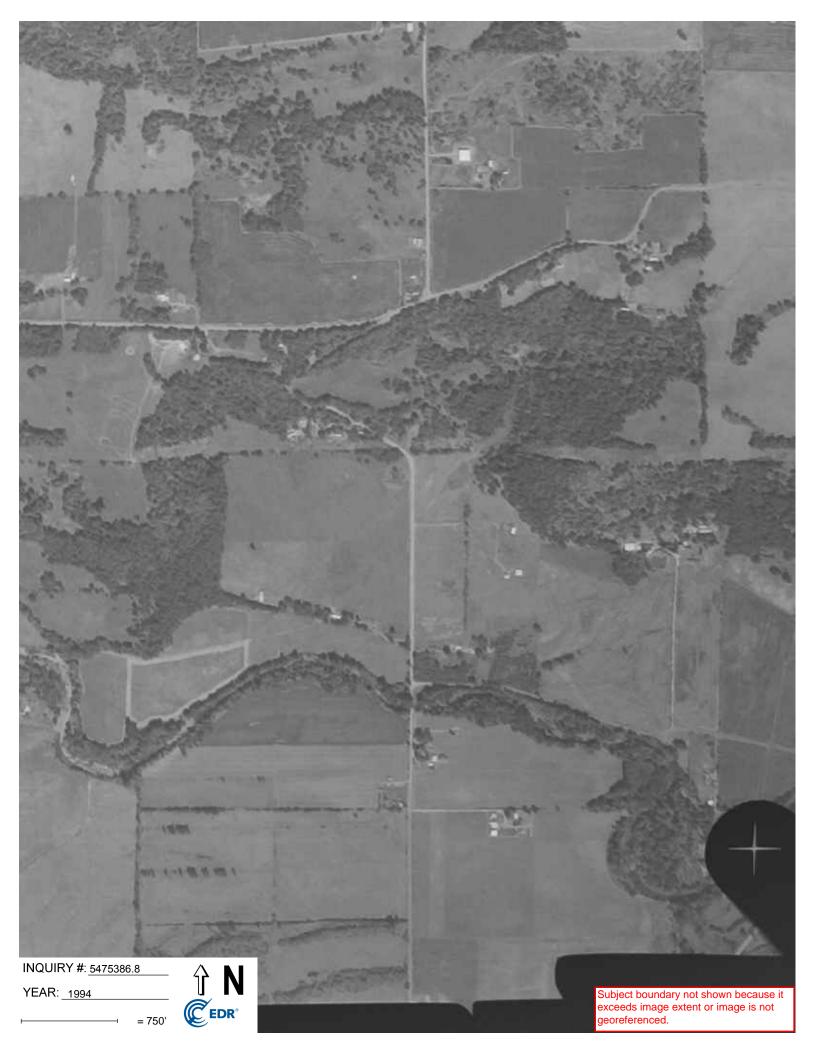
<u>Year</u>	<u>Scale</u>	<u>Details</u>	Source
2016	1"=500'	Flight Year: 2016	USDA/NAIP
2012	1"=500'	Flight Year: 2012	USDA/NAIP
2009	1"=500'	Flight Year: 2009	USDA/NAIP
2006	1"=500'	Flight Year: 2006	USDA/NAIP
1994	1"=750'	Flight Date: May 23, 1994	USGS
1982	1"=500'	Flight Date: July 10, 1982	USDA
1976	1"=500'	Flight Date: July 28, 1976	USGS
1967	1"=500'	Flight Date: November 19, 1967	USGS
1955	1"=500'	Flight Date: July 10, 1955	USGS
1948	1"=500'	Flight Date: June 28, 1948	USDA

When delivered electronically by EDR, the aerial photo images included with this report are for ONE TIME USE ONLY. Further reproduction of these aerial photo images is prohibited without permission from EDR. For more information contact your EDR Account Executive.


Disclaimer - Copyright and Trademark Notice


This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2018 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.


EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

Shimanek Covered Bridge

Richardson Gap Drive/Shimanek Bridge Dr Scio, OR 97374

Inquiry Number: 5475386.5

November 06, 2018

The EDR-City Directory Image Report

TABLE OF CONTENTS

SECTION

Executive Summary

Findings

City Directory Images

Thank you for your business.Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OR DAMAGE, INCLUDING. WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction orforecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2017 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc. or its affiliates is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

EXECUTIVE SUMMARY

DESCRIPTION

Environmental Data Resources, Inc.'s (EDR) City Directory Report is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's City Directory Report includes a search of available city directory data at 5 year intervals.

RECORD SOURCES

EDR's Digital Archive combines historical directory listings from sources such as Cole Information and Dun & Bradstreet. These standard sources of property information complement and enhance each other to provide a more comprehensive report.

EDR is licensed to reproduce certain City Directory works by the copyright holders of those works. The purchaser of this EDR City Directory Report may include it in report(s) delivered to a customer. Reproduction of City Directories without permission of the publisher or licensed vendor may be a violation of copyright.

RESEARCH SUMMARY

The following research sources were consulted in the preparation of this report. A check mark indicates where information was identified in the source and provided in this report.

<u>Year</u>	Target Street	Cross Street	<u>Source</u>
2014	$\overline{\checkmark}$		EDR Digital Archive
2010	$\overline{\checkmark}$		EDR Digital Archive
2005	$\overline{\checkmark}$		EDR Digital Archive
2000	$\overline{\checkmark}$		EDR Digital Archive
1995	$\overline{\mathbf{V}}$		EDR Digital Archive
1992	\checkmark		EDR Digital Archive

FINDINGS

TARGET PROPERTY STREET

Richardson Gap Drive/Shimanek Bridge Dr Scio, OR 97374

<u>Year</u>	CD Image	Source	
RICHARDSON	RICHARDSON GAP RD		
2014	pg A2	EDR Digital Archive	
2010	pg A5	EDR Digital Archive	
2005	pg A8	EDR Digital Archive	
2000	pg A11	EDR Digital Archive	
1995	pg A13	EDR Digital Archive	
1992	pg A16	EDR Digital Archive	
SHIMANEK BE	R DR		
1992	pg A17	EDR Digital Archive	
SHIMANEK BE	RIDGE DR		
<u>OTHIMANER BI</u>	MDOL DIX		
2014	pg A4	EDR Digital Archive	
2014	pg A7	EDR Digital Archive	
2005	pg A10	EDR Digital Archive	
2000	pg A12	EDR Digital Archive	
1995	pg A14	EDR Digital Archive	
1992	pg A18	EDR Digital Archive	
1002	ружто	LDR Digital Archive	
SHIMANK BRI	OG DR		
1995	pg A15	EDR Digital Archive	
1992	pg A19	EDR Digital Archive	

5475386-5 Page 2

FINDINGS

CROSS STREETS

No Cross Streets Identified

5475386-5 Page 3

0.5707	DDOVIDNO VANVDO CUDICTALELI MCUD	
35787	PROVIDNC VNYRD CHRISTN FLLWSHP	
35819	DUNN, LOREN C	
35832	JIMENEZ, JOSE T	
35849	MCLEAN, RICHARD C	
35854	OLSON, JOSEPHINE R	
35891	BRENNER, GREGORY J	
	KNOC PROPERTIES LLC PACIFIC ANALYTICS LLC	
36012	BENCHMARK CONTROLS LLC	
30012	DAVIS, GENEVA M	
36060	POTTER, AARON B	
36080	OCCUPANT UNKNOWN,	
36096	WILLIAMS, JOHN	
36122	HENRY, HEIDI A	
	DELAMATER, ROBERT E	
36167	TARGET MARKETING SERVICES	
	TJY PROPERTIES LLC	
	YOUNG, MARK D	
36176	ERICKSON, MARK A	
	IT TOTAL CONNECTIONS	
36390	HAGGARD, JASON N	
36450	LUCKINI, DAVID	
36456	WARNER, BRANDON C	
36554	TATUM, DOUGLAS L	
36590	OCCUPANT UNKNOWN,	
36596	LUCKINI GENO	
	OCCUPANT UNKNOWN,	
36750	SILBERNAGEL, JON E	
36831	MOORE, DELORES J	
36854	OCCUPANT UNKNOWN,	
36932	FERY JOE	
0=0.10	FERY, JOE R	
37046	OCCUPANT UNKNOWN,	
37050	FRITTS, JOSEPH S	
37093	MIKOLAS, DOUGLAS A	
37095	CLAYTON, GLENN O	
	LEONE REBEKAH LODGE NO 84 I SCIO MINI STORAGE	
37099	BOLMAN, LOGAN	
37300	KINNEY, JACK	
37300	TPOB ENTERPRISES	
37317	LARONT, MARVIN N	
37382	OCCUPANT UNKNOWN,	
37545	NORTON, DANIEL L	
37575	HUNTER JEFFREY C	
0.0.0	HUNTER, JEFFREY C	
	MOUNTAIN VALLEY FARM LLC	
37613	MALIN, GREG T	
37617	EVE, FREDRICK L	
37665	OLAND, JULIANNE E	

RICHARDSON GAP RD 2014 (Cont'd)

38011	SILBERNAGEL, DAVID J
38165	CHRISTIE FARMS
	CHRISTIE, JONATHAN E
38167	CHRISTIE, CT T
38243	SMALLEY JACK
	SMALLEY, SUZANNE M
38301	MARTIN, RICHARD T
38314	CLASON, RICHARD J
38348	ENGLER CONSTRUCTION INC
	OCCUPANT UNKNOWN,
38480	KIMMEL, JOHN H
38499	CLARK, BRUCE F
38514	BELLIARD, ERNESTO S
38550	ZELENKA, ERNEST
38609	TIPPIN, JOHN A
38665	OCCUPANT UNKNOWN,
38666	OCCUPANT UNKNOWN,
38781	BOECKNER SPREADING & TRUCKING
	JANTZ, FRANKLIN
38916	CARTER, JON L
38995	READ, LACY
39006	MALUSKI, IVAN I
39049	BYERS, DANIEL F
00070	FRONT DOOR ENTERPRISES
39079	ANDROES, RICHARD
39140	ADAMS, MEGAN
39141	BRIGGS, VANCE A
	GAP ROAD
	REX LOWTHER
00044	RUSH GRAPHICS
39241	CRENSHAW, BRUCE
39378	MULVAHILL, TODD
39382	HARGREAVES, NORMA R
39388	HAMLIN, KEVIN W
39392	PILGRIM, ALLEN W
20400	VISUAL APPEAL
39400	GUMM, JOYCE A

40411	OCCUPANT UNKNOWN,
40419	BORCHARD CONSTRUCTION CO
	BORCHARD TRANSPORT INC
40420	BEATY, WILLIAM
40444	ROHDE, LYNN M
40454	RAUCH, FREDDY G
40595	SILBERNAGEL, TODD
40773	MILES HAY FARMS INC
	MILES, DANIEL
40777	DOG & CAT BOARDING
	R J STUSSY ENTERPRISES
	STUSSY, RICHARD J
40781	BENNETT, DANIEL A
40939	ALIOTH, LARISSA
41014	JANTZ, BRENDA K
41037	NEWSOME, SAMUEL
41044	JANTZ, CURTIS D
41055	CLOUD NINE CONSTRUCTION
41078	CROMPTON, LARRY B
41121	OCCUPANT UNKNOWN,
41125	K H A MANAGEMENT
41199	TOEWS, THAD J
	TRIPLE T LIVESTOCK LLC

0.570	PROMPNOS VANCER OURISTNESS LOW	
35787		
35819	·	
35832	·	
35849	,	
35854	,	
35891	· ·	
	KNOC PROPERTIES LLC	
	PACIFIC ANALYTICS LLC TUCKER CNSTR & REMODLING	
36012		
30012	OCCUPANT UNKNOWN,	
36060	·	
36096		
36122		
36124	·	
36167		
00.0.	YOUNG, MARK D	
36176	·	
	IT TOTAL CONNECTIONS	
36234	DUNCAN, MICHAEL L	
36246	·	
36390	OCCUPANT UNKNOWN,	
36456	OCCUPANT UNKNOWN,	
36554	GARCIA GERARDO	
	GARCIA, ARMINDA	
36596	LUCKINI GENO	
	LUCKINI, GENO J	
36750	·	
36831		
	MOORE, DELORES J	
36854	·	
36932		
	FERY, DAVID A	
27050	J & K FARMS	
37050	FRITTS, JOSEPH S J S FRITTS	
37093		
37095	·	
37030	LEONE REBEKAH LODGE NO 84 I	
	SCIO MINI STORAGE	
37099		
0,000	BOLMAN, RUSSELL L	
37300	·	
2.000	TPOB ENTERPRISES	
37317		
37545	·	
37575	· ·	
	HUNTER, JEFFREY C	
	MOUNTAIN VALLEY FARM LLC	
37613	MALIN, GREG T	

RICHARDSON GAP RD 2010 (Cont'd)

37617	,
37665	,
38011	,
38165	
	CHRISTIE FARMS
	CHRISTIE, JONATHAN E
38167	,
38243	
	SMALLEY, SUZANNE M
38301	,
	MARTIN, RICHARD T
38314	•
38348	,
	OCCUPANT UNKNOWN,
38466	,
38480	,
38499	- , -
38514	,
38550	, -
38609	,
38665	
	WEBSTER, ROD H
38781	BOECKNER SPREADING & TRUCKING
	JANTZ, FRANKLIN
39006	ALLEN, MICHAEL K
39049	OCCUPANT UNKNOWN,
39079	BYERS, DANIEL F
39141	BRIGGS, VANCE A
	RUSH GRAPHICS
39374	MICHAEL, WILBERT
39378	OCCUPANT UNKNOWN,
39382	HARGREAVES, NORMA R
39388	BURKS, ROY S
39392	PILGRIM, ALLEN W
	VISUAL APPEAL
39400	GUMM, JOYCE A

40411	OCCUPANT UNKNOWN,
40419	BORCHARD CONSTRUCTION CO
	BORCHARD TRANSPORT INC
40420	BEATY, WILLIAM B
40444	BASKET PEDDLER
	ROHDE, LUKE W
40454	RAUCH, FLORA M
40595	OCCUPANT UNKNOWN,
40773	B & B LAWNSERVICES LLC
	OCCUPANT UNKNOWN,
40777	DOG & CAT BOARDING
	R J STUSSY ENTERPRISES
	STUSSY, RICHARD J
40781	
40939	NELSON, HENRY
41014	JANTZ, BRENDA K
41037	,
41044	JANTZ, CURTIS D
41055	CLOUD NINE CONSTRUCTION
	TURNER, FAYE B
41078	*···*···· · *···, = ······ =
41121	= =, = .
41125	
41199	TOEWS, THAD J

		_
25707	DDOVIDNOS VAIVAD CUDISTALSSU OV	
35787	PROVIDNCE VNYRD CHRISTN FELLOW	l
35819	DUNN, BOB L	l
35832	LEISINGER, ALVIN H	l
35849	MCLEAN, RICHARD C	l
35854	OLSON, DIANA D	l
35891	BEATTIE, URSALA T	l
00040	TUCKER CNSTR & REMODLING	l
36012	DAVIS, WARREN R	l
36060	POTTER, AARON B	l
36096	OCCUPANT UNKNOWN,	l
36122	SCHEEL, VIRGIL R	l
36124	K KROSS CATTLE CO	l
00470	ROBERTS, DOLLY L	l
36176	ERICKSON, MARK A	l
36234	MIKES MASONRY	l
36246	MASSEY, JOY	l
36554	OCCUPANT UNKNOWN,	l
36596	LUCKINI, GENO J	l
36831	MOORE, DELORES J	l
36854	EASLY, CHRISTINE A	l
36932	FERY, JOE R J & K FARMS	l
27050		l
37050	FRITTS, JOSEPH S	l
37093	MIKOLAS, DOUGLAS A CLAYTON, GLENN O	l
37095	SCIO MINI STORAGE	l
37099	OCCUPANT UNKNOWN,	l
37300	HOT ROD MARKETING	l
37300	TRICKEL, LINDA R	l
37317	LARONT, MARVIN N	l
37545	OCCUPANT UNKNOWN,	l
37575	HUNTER JEFFREY C	l
01010	HUNTER, JEFFREY C	l
37613	FRATTO, SALVATORE	l
37617	MOSSO, JOHN	l
37665	OCCUPANT UNKNOWN,	l
38011	NOLLEN, EARL J	l
38165	CHRISTIE FARMS	l
	CHRISTIE, JONATHAN E	l
38167	CHRISTIE, C T	l
38243	SMALLEY JACK	l
	SMALLEY, SUZANNE M	l
38301	FARREN, JAMES W	l
38314	MCLEAN, CORKY U	
38466	COMMONS, JOYCE	
38480	KIMMEL, JOHN H	
38499	COMMONS INC	
	COMMONS, THOMAS W	
38514	STIGEN, TERRY R	
38550	ZELENKA, SYLVIA K	

RICHARDSON GAP RD 2005 (Cont'd)

38609	CLASON, RICHARD J
38665	R WEBSTER & ASSOC
	WEBSTER, ROD H
38781	BOECKNER SPREADING & TRUCKING
	BOECKNER, ERROL G
38995	ATCHLEY, DANIELLE
	REBMANN, BRUCE A
39006	ALLEN, MICHAEL K
39049	DANIELS, RYAN R
39079	ROGERS, P
39141	BRIGGS, VANCE A
	RUSH GRAPHICS
39374	READ, TYLER
39378	OCCUPANT UNKNOWN,
39382	HARGREAVES, NORMA R
39388	BROCKMAN, GENEVA L
	COTTONWOODS ESPRESSO
39392	PILGRIM, ALLEN W
39400	OCCUPANT UNKNOWN,

4049	BORCHARD TRANSPORT INC
40411	ROGERS, SCOTT T
40419	BORCHARD CONSTRUCTION CO
40420	BEATY, WILLIAM B
40444	BASKET PEDDLER
	ROHDE, MARK W
40454	RAUCH, FLORA M
40595	PEARSON, ERIC
40773	STUSSY, RICHARD J
40777	DOG & CAT BOARDING
	OCCUPANT UNKNOWN,
	R J STUSSY ENTERPRISES
40781	OCCUPANT UNKNOWN,
41014	PEARSON, KRISTINE M
41044	JANTZ, CURTIS D
41055	CLOUD NINE CONSTRUCTION
41078	CROMPTON, LARRY B
41121	TURNER, LEONARD M
41133	HYDE, GREG
41199	TOEWS, THAD

35787	PROVIDNCE VNYRD CHRISTN FELLOW
35819	DUNN, BOB L
35849	MCLEAN, RICHARD C
35891	TUCKER, THOMAS L
36096	POTTER, DEION
36122	SCHEEL, VIRGIL R
36124	ROBERTS, GARY E
36554	TATUM, EMMA E
36596	LUCKINI, GENO
36831	MOORE, CHESTER
36932	FERY JOE
	J&K FARMS
37095	CLAYTON, GLENN
07000	SCIO MINI STORAGE
37099	BOLMAN, ROBERT L
37545	TRIPLE TD RANCH
37575	HUNTER, D
37665	PORT MYRON
20044	PORT, MYRON
38011	NOLLEN, EARL HARPER, CHERYL J
38165	·
38167	CHRISTIE, C T SMALLEY JACK
38243	SMALLEY, JACK
38301	FARREN, JAMES
38314	MCLEAN, PAUL
38514	VASQUEZ, MARTIN C
38550	ZELENKA, ERNEST
38609	CLASON, RICHARD J
38617	LINNWELD INC
38665	WEBSTER, ROD
38781	BOECKNER SPREADING & TRUCKING
00701	BOECKNER, ERROL
	JANTZ, F
38995	RYDHOLM, JOHN
39006	BEGUELIN, LISA M
39049	DANIELS, JAMES B
39079	ROGERS, THOMAS
39140	TRACEY, KEVIN
39141	BRIGGS, VANCE
	RUSH GRAPHICS

	SHIMANEK BRIDGE DR	2000
	BORCHARD CONSTRUCTION ROHDE, MARK W	
	UNLIMITED RESOURCES	
	RAUCH, AUGUST TOEWS, JOHN	
	WIGS HAIRPIECES & STYLING	
	PEARSON, ERIC	
40777	DOG & CAT BOARDING STUSSY R J ENTERPRISES	
40704	STUSSY, RICHARD	
	HAMLIN, JASON A CLOUD NINE CONSTRUCTION	
	CROMPTON, LARRY B	
	HYDE, GREG	
	TABOR, EDWARD M	

35787	PROVIDENCE VINEYARD CHURCH
36554	TATUM, OSCAR
36596	LUCKINI, GENO
36831	MOORE, CHESTER JR
36932	J&K FARMS
37093	KIBLER, ELMER
37095	CLAYTON, GLENN
37545	TRIPLE TD RANCH
37575	SAPAUGH, DON
37617	TORGISON, WESLEY
37665	PORT, MYRON
38167	CHRISTIE, C T
38301	FARREN, JAMES
38314	MCLEAN, PAUL
38484	KIMMEL, JOHN H
38499	COMMONS INC
38514	VASQUEZ, MARTIN C
38550	ZELENKA, ERNEST
38609	CLASON, RICHARD J
38781	BOECKNER SPREADING & TRUCKING
	BOECKNER, ERROL
38995	REBMAN, RAY
39079	ROGERS, THOMAS
39388	BROCKMAN, GENEVA
39400	GUMM, LOUIS J

40717	BORCHARD CONSTRUCTION STUSSY R J ENTERPRISES CLOUD NINE CONSTRUCTION

SHIMANN BRUG DR	1990
BORCHARD, OTMAR ROHDE, MARK W RAUCH, AUGUST SILBERNAGEL, TONY STUSSY, RICHARD KOOP, FRANK	
	BORCHARD, OTMAR ROHDE, MARK W RAUCH, AUGUST SILBERNAGEL, TONY STUSSY, RICHARD

35849	MC LEAN RICHARD C
36554	TATUM, OSCAR
36596	LUCKINI, GENO
36750	BRASSWELL, HAROLD J
36831	MOORE, CHESTER JR
37095	CLAYTON, GLENN
37317	LARONT MARVIN N
37575	SAPAUGH, DONALD J
37617	HOLMES, TIM
38167	CHRISTIE, C T
	LINNWELD CO
38301	VIAN, LORETTA J
38314	MCLEAN, PAUL
38480	CHILDERS, JOHN N
38484	KIMMEL, JOHN H
38514	VASQUEZ, MARTIN C
38550	ZELENKA, ERNEST
38609	CLASON, RICHARD J
38781	BOECKNER SPREADING & TRUCKING
	BOECKNER, ERROL
38995	REBMAN, RAY
39079	ROGERS, THOMAS
39400	GUMM, LOUIS J

SHIMANEK BR DR 1992

_		SHIMANEK BR DR	1992
		DODGUADD OTHER	
	40419		
	40444	PEARSON, KAREN L ROHDE, MARK W	
	40454		
	40595	SILBERNAGEL, TONY	
	40713		
	40717	STUSSY, RICHARD	

40717	STUSSY R J ENTERPRISES

Target Street	Cross Street	<u>Source</u>
✓	-	FDR Digital Archive

38747	SUMMEROW, JAMES W

Appendix B.

Site Photographs

Photograph 1.Shimanek Covered Bridge

Photograph 2.
View to the south of
Richardson Gap Road and
Shimanek Covered Bridge

Photograph 3.Shimanek Bridge Drive, view to the northeast

Photograph 4.

View to the north of Richardson Gap Drive

Photograph 5.

View to the northeast from the south side of the bridge.

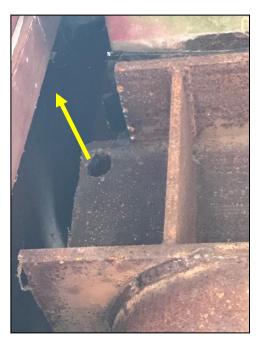
Photograph 6.

View to the southeast.

Photograph 7.

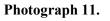
View to the west from the south side of the bridge.

Photograph 8.


Asphalt chunks located on the northeast corner of the approach to the bridge.

Photograph 9.

Samples AS-01 and AS-02: Netting and coating on pilings.



Photograph 10.

Samples AS-03 and AS-04: Mastic/Tar below netting on piles.

Samples AS-05 and AS-06: Tar on I-beam.

Photograph 12.

Samples AS-07 and AS-08: Rubber spacer between Ibeam and concrete.

Photograph 13.

Roofing materials. No felt observed. No samples were collected for asbestos analysis.

Photograph 14.

Two layers of paint visible on the outside of the bridge: the dark red is the most recent coat.

Photograph 15.

Window casing: lead detected with the colorimetric swab kit.

Appendix C.

Site Reconnaissance Checklist and Field Forms

INITIAL SITE ASSESSMENT (ISA) CHECKLIST

Project Information

District:	County: <i>Linn</i>	Route: Richardson	Milepost: 0.70
		Gap Drive	
Description: Thomas Cr	reek (Richardson Gap Dr	rive) Shimanek Covered E	Bridge Project
Does the project have potential hazardous waste involvement? Yes			

Screening Criteria

1.	Project Features: New R/W? N	Excavation?	Y	Relocate Utilities? N	
2.	2. Land Use History and Development Setting (urban/rural; industrial, commercial, agricultural,				
	housing other –list)				
	Current land uses: Bridge and pub.	lic roadway			
	Previous land uses: Bridge/roadwa	ıy			
	Adjacent land uses: Agricultural a	nd residential			
3.	In-house record review				
4.	Any known hazardous waste sites i	n vicinity?	No	If yes, identify and explain.	

Optional Records

County Assessor	Fire Dept	Sanborn Maps <i>X</i>	Other
-----------------	-----------	-----------------------	-------

Take photos of sites or sketch

Visual Inspection

v isuai inspection		
Storage Structures:	Contamination:	Potential asbestos containing
		materials: Yes
Underground tanks	Surface Staining	Buildings
Aboveground tanks	Oil sheen	Sprayed-on fireproofing
Sumps	Odors	Pipe wrap
Ponds	Stress vegetation	Floor tiles
Transformers	Other	Siding
Other		Ceiling tiles
		Acoustical plaster
Sites:	Sites	Sites: Piling cap, mastic near
		piles, tar on I-beam, rubber
		spacer by I-beam

Comments:	Conducted by: Jessica Penetar-CES
See laboratory report for results of asbestos	survey, soil sampling, and lead paint/wood
composite sampling	

CES

DAILY FIELD REPORT

	1. () () ()	0	
PROJECT:	I'm County-Snimmel Bridge	PROJECT #: 2018 230024	
LOCATION	1: Scia OR	TASK #: 202	
CONTRACT	ΓOR:	BILLING GROUP #:	
CES PERSO	ONNEL: J. Peretur	PAGE \ OF \	
WEATHER	: Surry, 40F	DATE: 9//19/18	
TIME	DESCRIPTION OF WORK		
958	J. Penetus of UES on-site	For soil sampling +	
	phase I inspection Founda		
	Dr. lling on south side of b	udge.	
100	Spoke w/ Muff of foundation	/ \	
	of bridge Ux2 Hollow Stew and		
	Switches to Mid rotory, cuttings from 2-5' pre mostly		
	mud. Put begs on-ice. Watting for lab bottles will		
	Works Sing Composte for PAPH Metals PCB, VOC, NUTPHOX		
	perticular + herbidge Foundation	poin BH-2.	
10)	Collect SS-04, 6-point co		
	of Shimarek Bridge, Glora R.	Chardson Coup Dr. Two	
	points North of Sh. Br Dr. 3	on each side of Ric. Gal	
	Do. Collected between () - 12".	due to refusal at 8-12"	
	because of gravel + fill. Dego	n augur	
1130	Collect SS-05 6-point co		
	side of Shimonik Bridge, 3	on each side of road	
	Kevin Groom of Lim Country Stop		
	Off-site now.		
1140	Asbestos inspection: (will saw	nde mother Lay	

CES

DAILY FIELD REPORT CONTINUED

PROJECT	: Linn County - Shimanek Concessed Bo	PROJECT #: 2018230024
	ONNEL: Rentar	PAGE Q OF Q
) 20 10 10 10 10 10 10 10 10 10 10 10 10 10		DATE: 1/19/18
TIME	DESCRIPTION OF WORK	
	Netting between approach spant	plings (under bridge)- Supple
	floor is wood - no suspect for	can see through it.
	- can see through soof in some spot	
	Metal at bag of Fost	
	No signs of caulking. No oth	oppias ACM. will region
	Dlans in more detail.	
1215	Coordinate w/ Matt on Sample a	iollection from other
	two logitions. To off-site	
	Jum Stryll	
14 05	Collect SS-02 From Foundation	on Ends Code Soils
	Collect SS-012 from foundation from 1.5'-2' had petroleum	odor.
		1.01
		June Cento
		$\hat{}$

Asbestos Survey Field Data Sheet

Sampler Name:	SKG Pat				
Date: 2/6/1	q				
Site: Shama	k Brody	J) W			
Sample ID		Amount	Location	Condition	Friable?
45-01	Nethor of Diling Cos like	9.53	some start of	Part.	Nothing No
tros	` ' ' ' ' ' '	1004	1 1	ない	1
A5-03	Mestic below retiry - on our	156		Low	Yes
A5-04		(005		0	, ,
AS-05	Toron I-beam	486	I beam on piles new road.	doop.	No
AS-06	11 11	9.5%		0000	No
A5-07	Rubber matrial between	8)(0)	between concete + + bun	8	N,
R5- 08	Conjust I bym	100		Good	No

CES

DAILY FIELD REPORT

	CI V((P)	PROJECT # 20 0024	
II .	Shimmek Covered Bridge	PROJECT #: 29823024	
LOCATION	Scio, OR	TASK#:	
CONTRACT		BILLING GROUP #:	
CES PERSO	NNEL: J. Peretre, C. Cotton	PAGE OF O	
WEATHER:	Claredy 35°F	DATE: 2/6/19	
TIME	DESCRIPTION OF WORK		
941	CES on-site for lead insp	ection and ashistos	
	SIGUELA		
953	Collect As- B Start asbestos	Survey, See other	
	Shut		
1023	Grish asbeston Survey. Start with lead survey		
	Autal sails are parted on approach. Par supe, willnot be		
	Acsted at this time		
	Wood railing on North west Side of landge - No lead defected		
	(such not red)		
	Dork red top layer on govered bridge. No lead detected.		
	light red base cost or bridge: No leas detected, However,		
	part is red and hard to determine with swabs.		
	White paint on old dows: No Pb. detected.		
	Ruling exposed represent of paint. No lead detected (under aver)		
	Cross been inside bridge (x-supports). Its lead between		
	Matal vartical rods: No lead det	cotte	
	Window Cusing uside bridge led		
1205	Collect wood composite. Wood ar		
	from two undow cosms and som	ret pant aceas.	

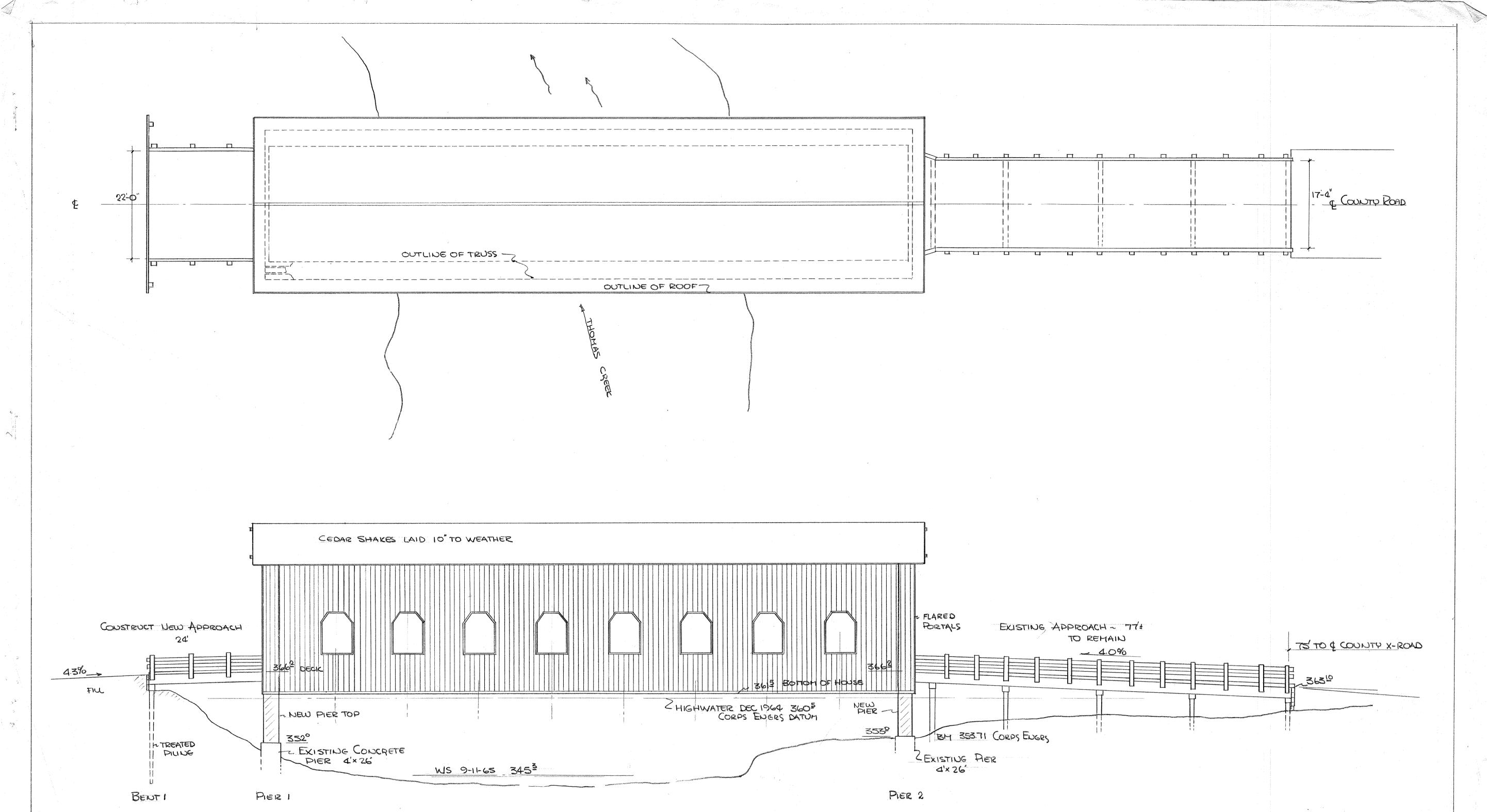
CES

DAILY FIELD REPORT CONTINUED

PROJECT	*	PROJECT #:
CES PERS	ONNEL:	PAGE 2 OF 2
		DATE: 2/6/19
TIME	DESCRIPTION OF WORK	
1215	CES off-site.	
	1 0 1	
	Join Kent	
		No.
		=
	/ **	
	1	
		v

Appendix D.

Bridge Drawings

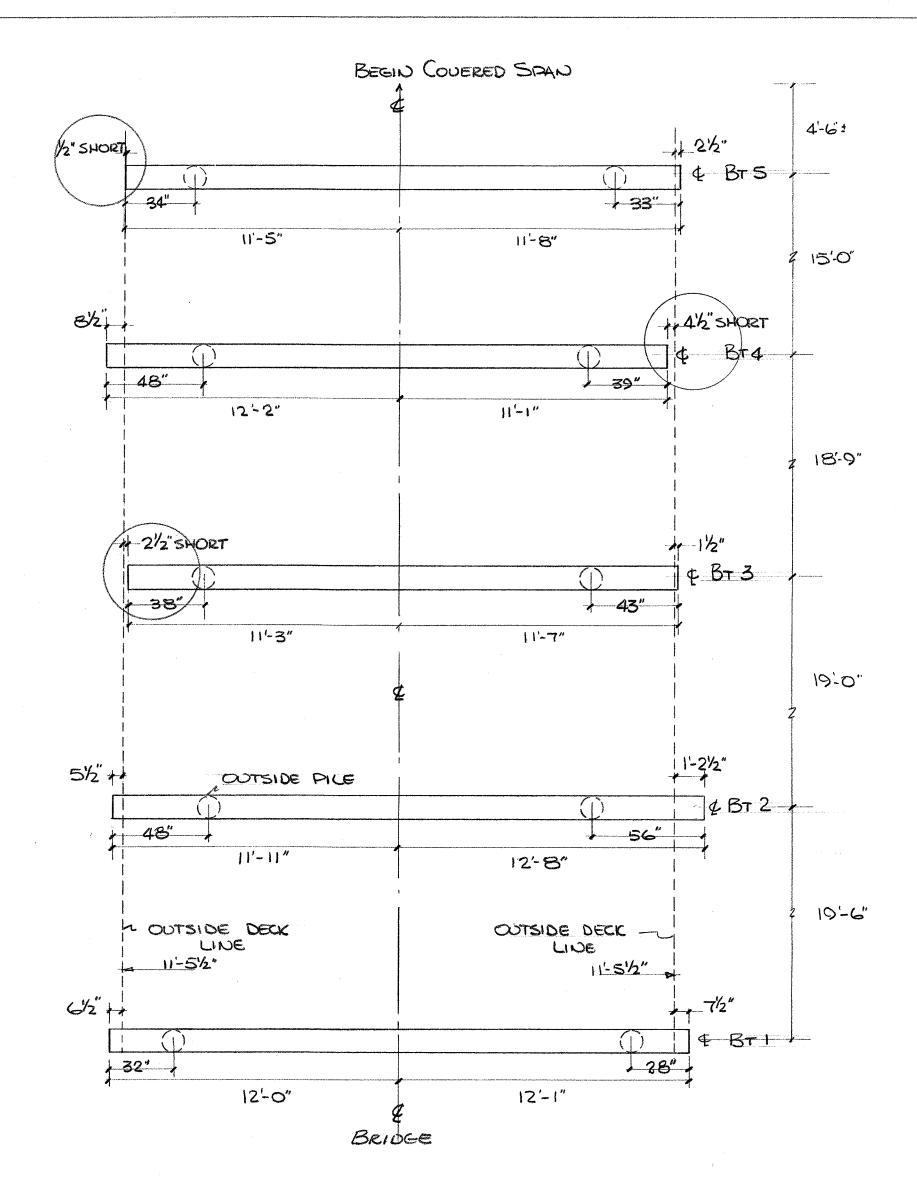

3 down and then every other

BID TABULATION

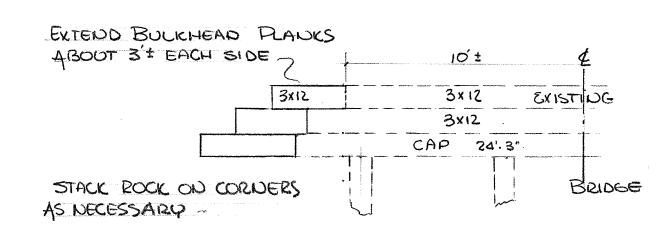
PHASE I

BID OPENING: April 26, 1989 9:40 A.M., P.D.T.

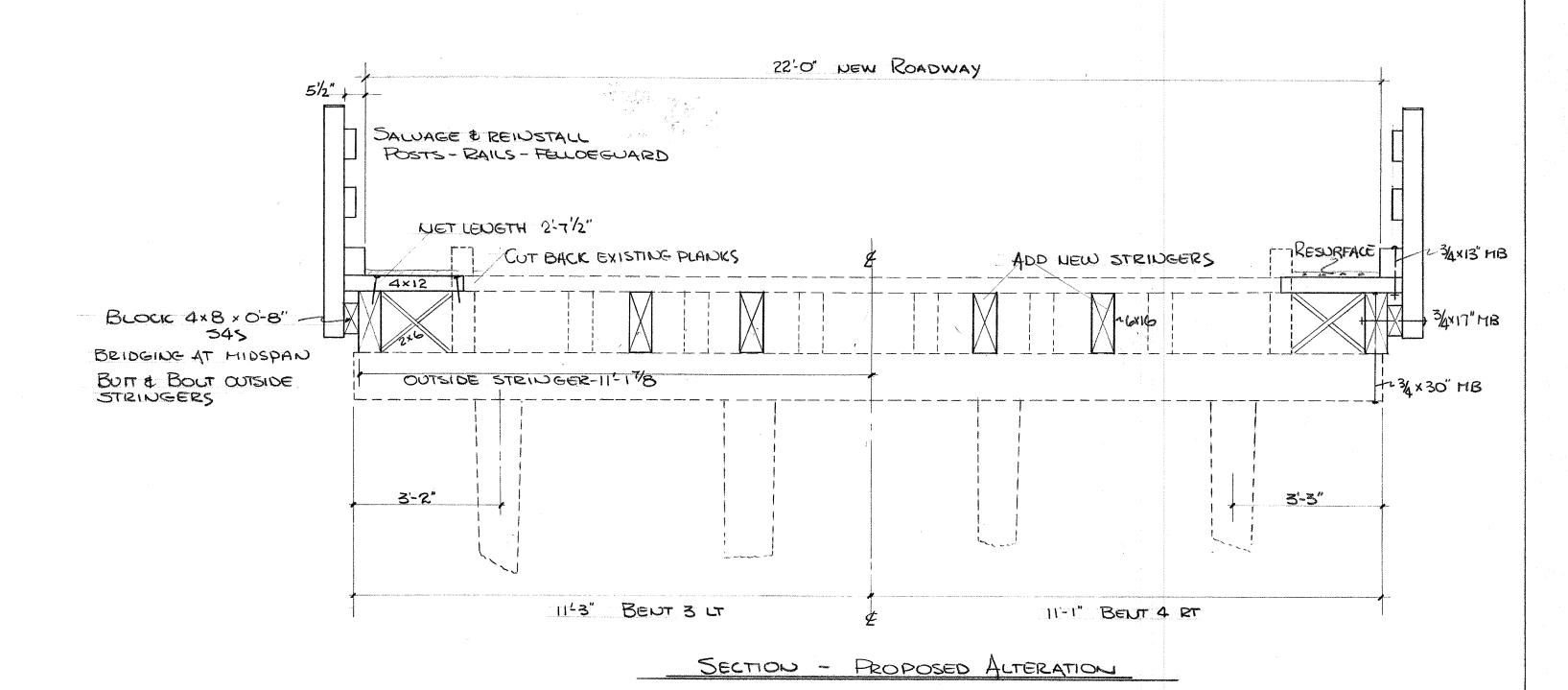
	PHASE I Asphalt Concrete Class "B"	Mall		
	33,870 TONS	QUANTITY		
,	\$ 23.30	PRICE	E SI	
	33,870 TONS \$ 23.30 \$ 789,171.00	TOTAL	ENGINEER'S ESTIMATE	
	1/4 22 S	PRICE	Morse	
	5876414978	TOTAL-	'	
	100 8		Bros	
	SUIS	PRICE	N. 53.	
	s <u>ul 45</u> \$ 733, 285.50	TATOT	N. Santian	
	\$ 23 15	PRICE	Hans	
	\$ 784,090 30 \$2430 \$	UNIT TOTAL		
	\$ 42	TAIOI TAIOI	77.77	
	\$ 823,041,00	TOTAL		

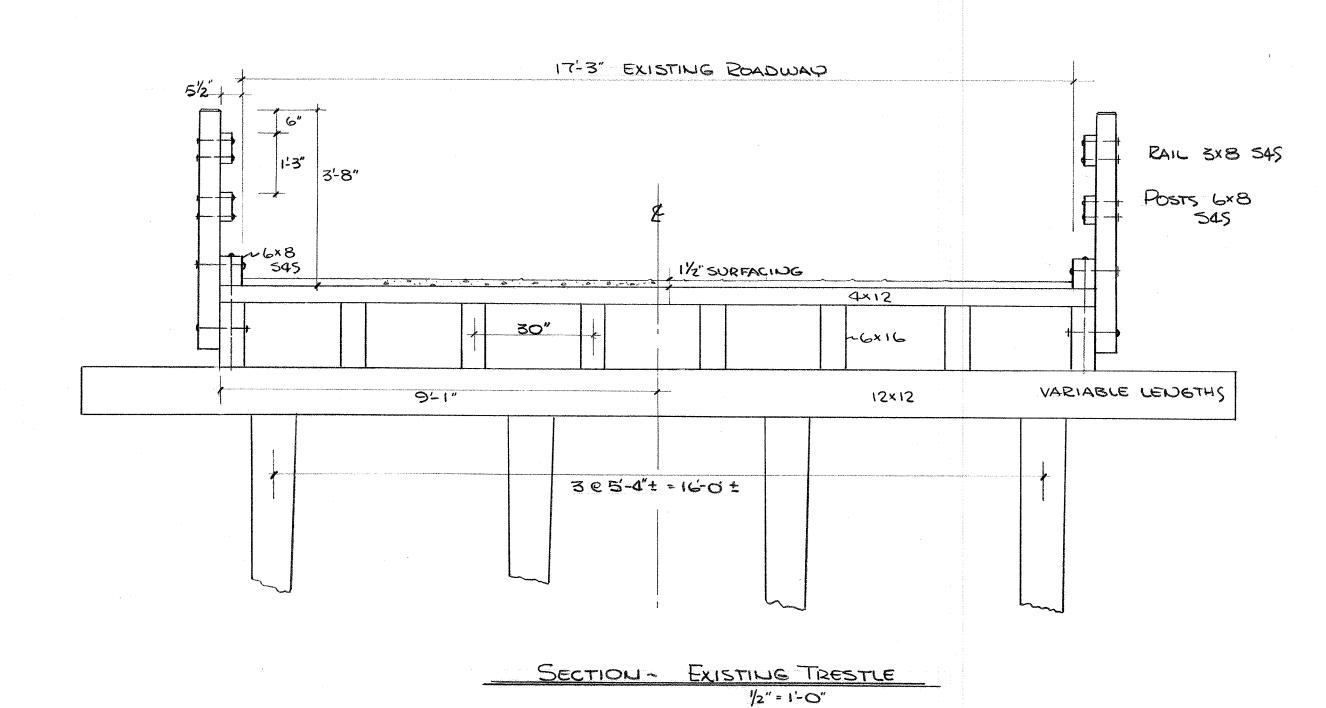

€0.4 °

SHIMANEK BRIDGE


THOMAS CREEK - LINN CO.

130-6 HOWE TRUSS 22:0" ROADWAY H20-516-44 LOADING

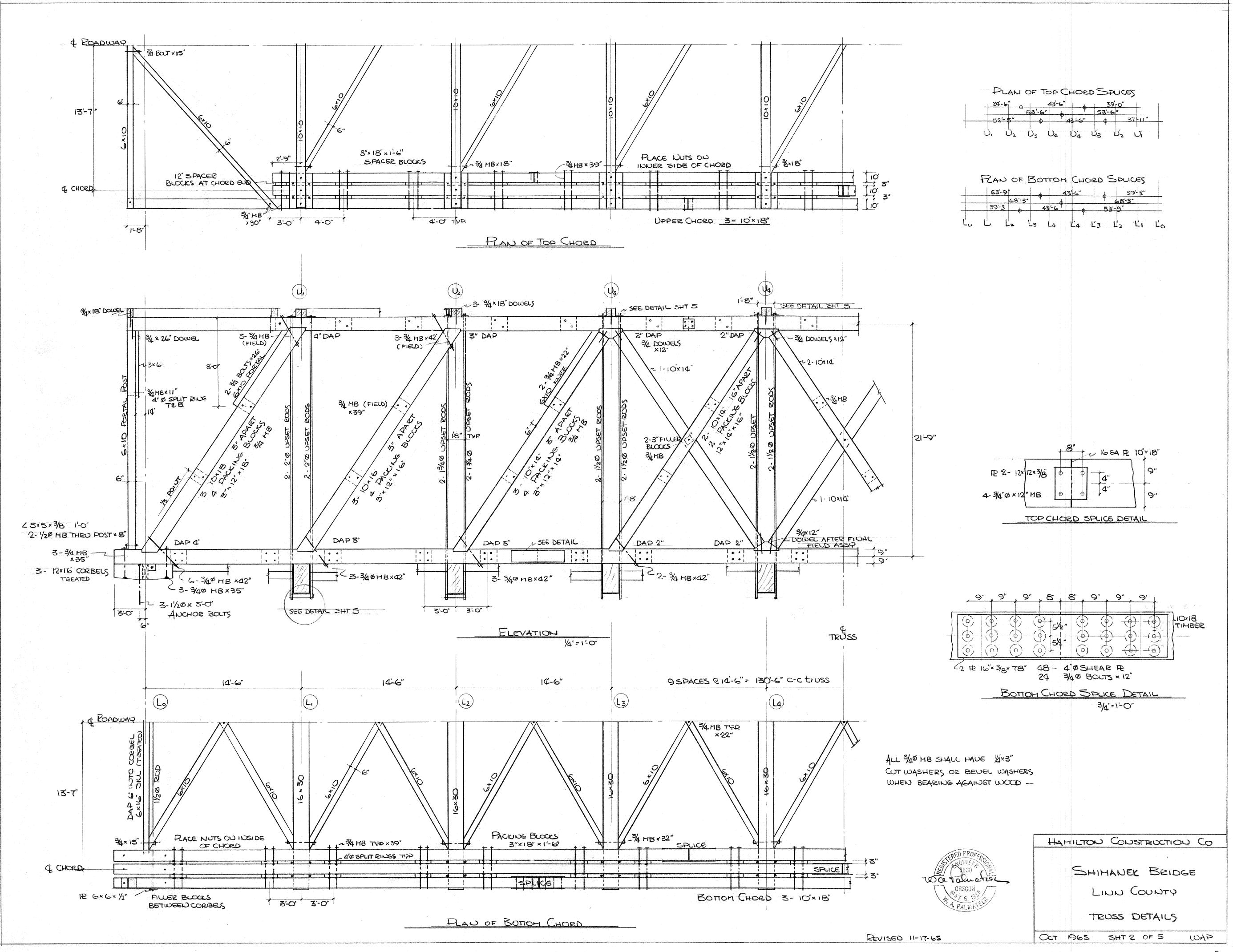

STATE # 12965 COUNTY # 637-070

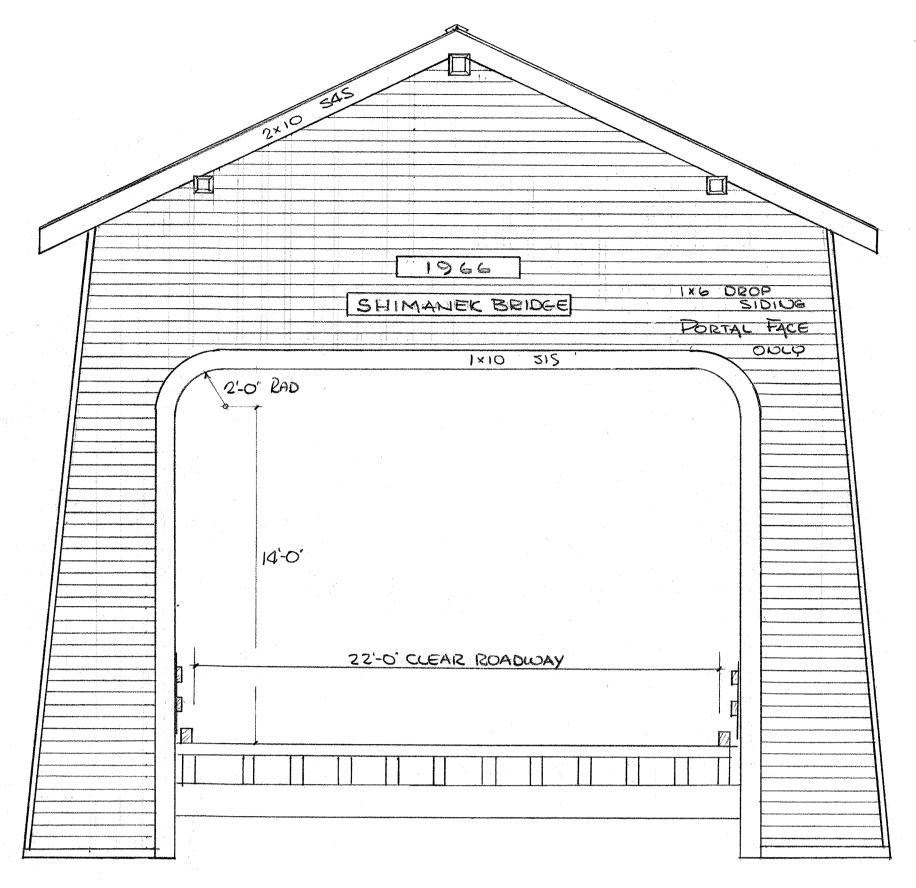


PLAN - CAP LAGOUT /4" = 1'-0"

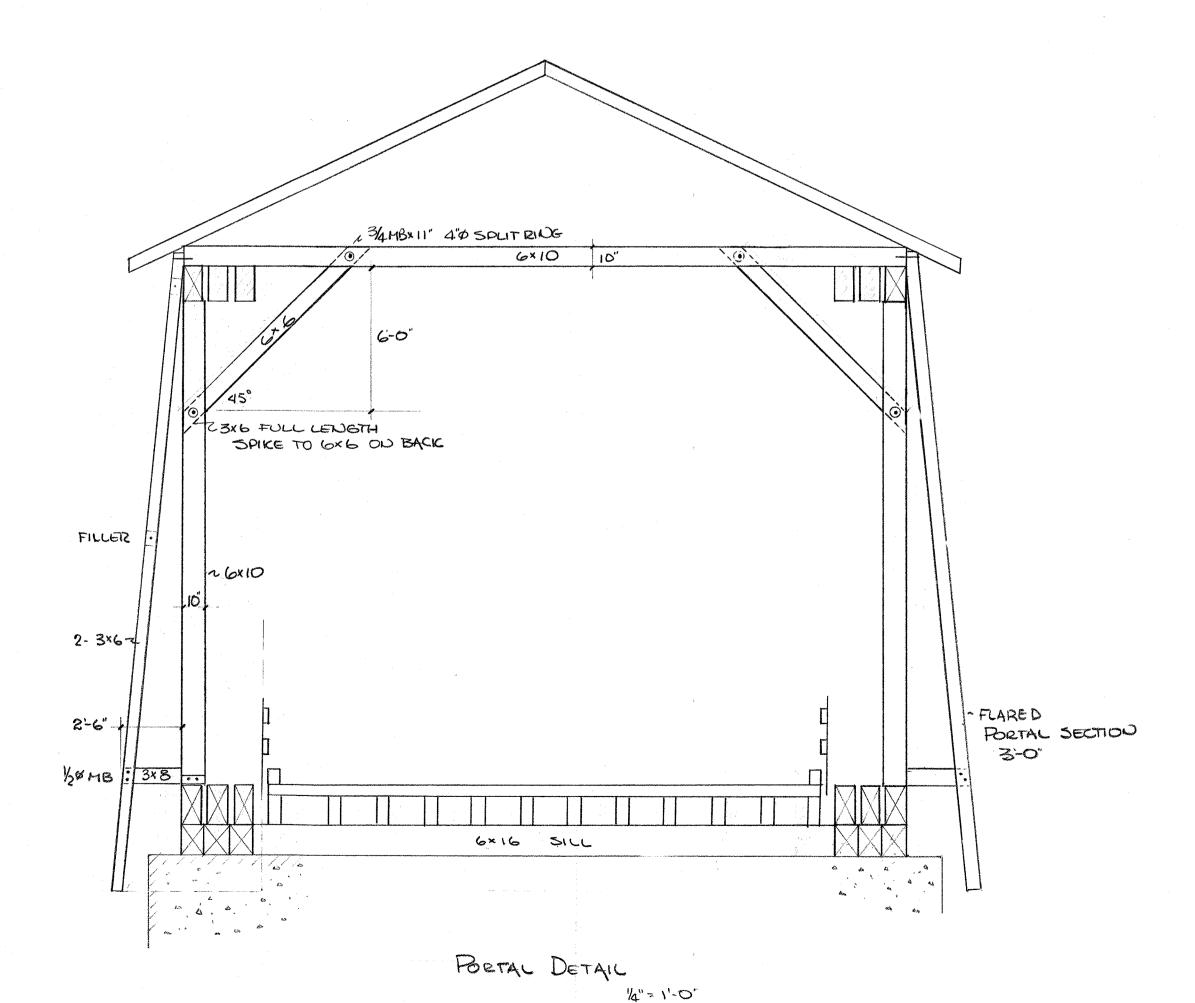
END BULKHEAD REUISION
W=1-0"

CRITERIA FOR H-15 LOADING - 6×16 STRINGERS C 2'-3" SPACING WITH 4" DECK - ADD 4 ADDITIONAL STRINGERS AS SHOWN FOR H20-5-16 LOADING

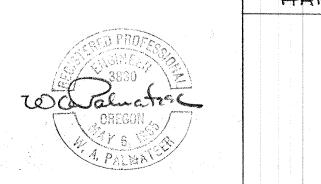

HAMILTON CONSTRUCTION CO.

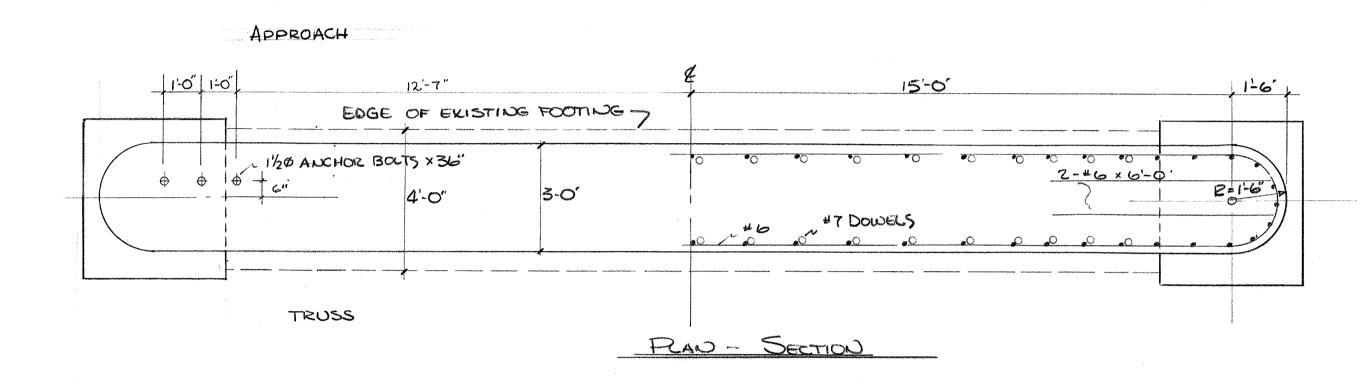

SHIMANER BRIDGE

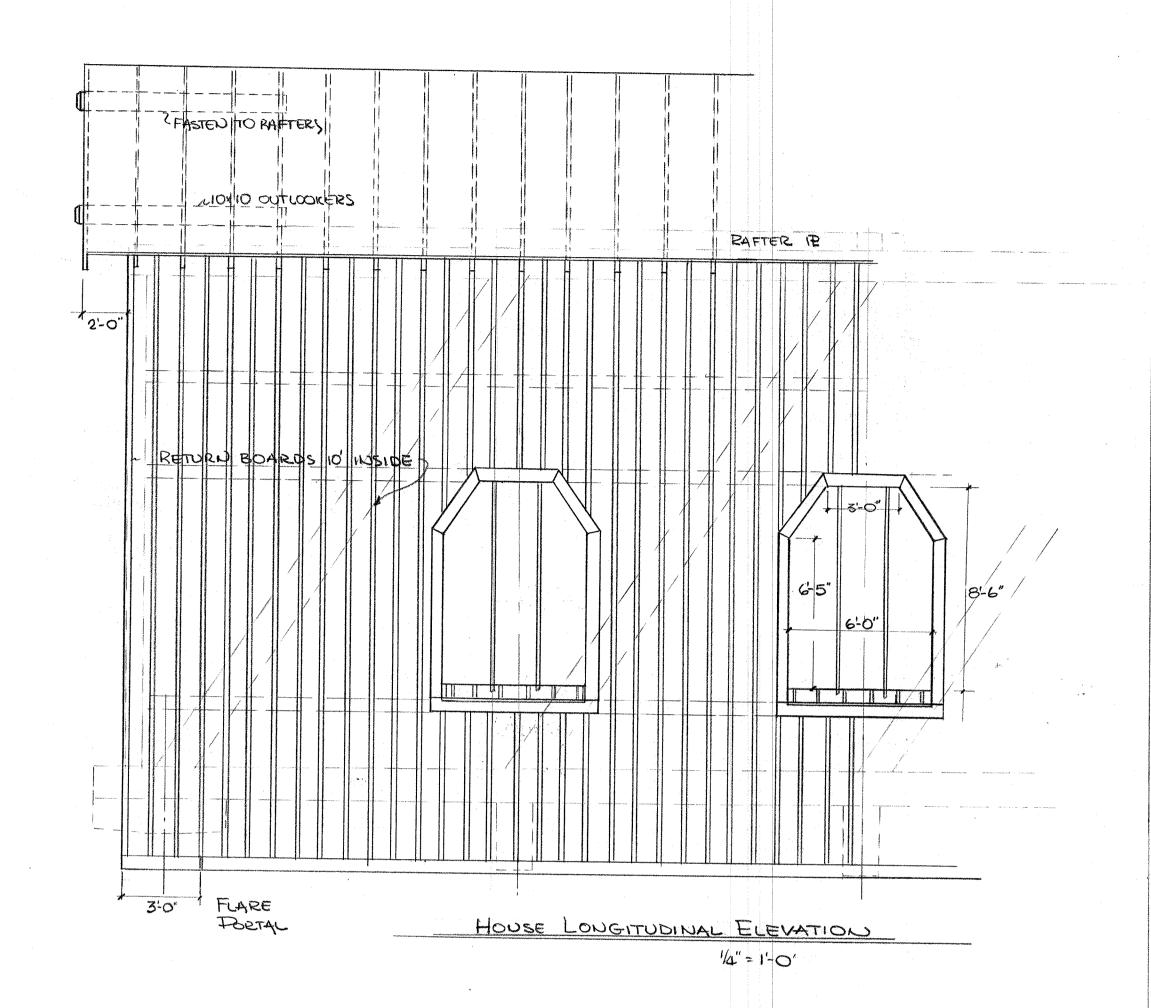
ALTERATIONS TO THE

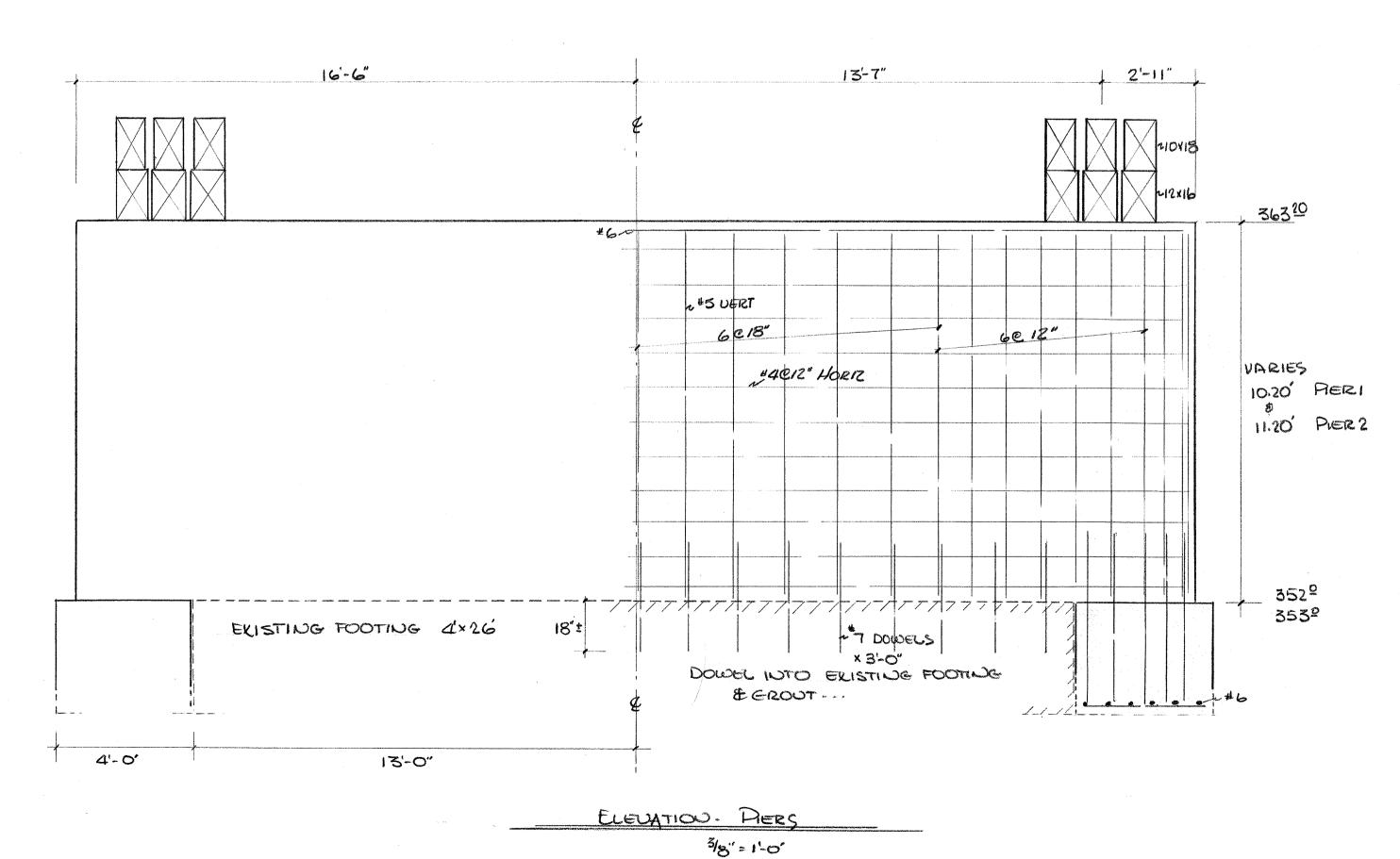

NORTH APPROACH

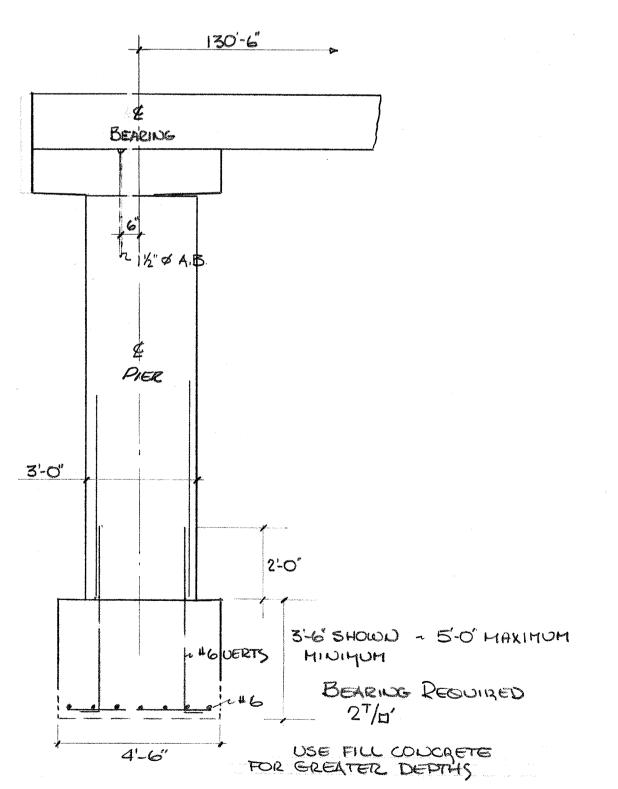
WAP FEB 8, 1966 SHT 1/1





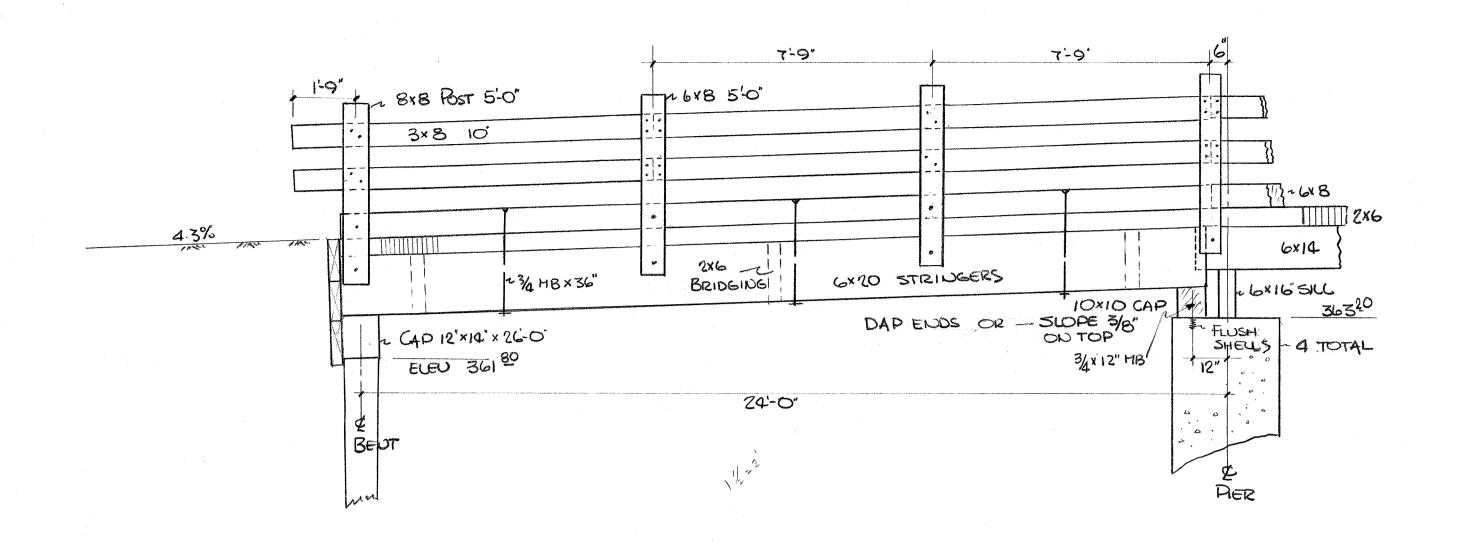


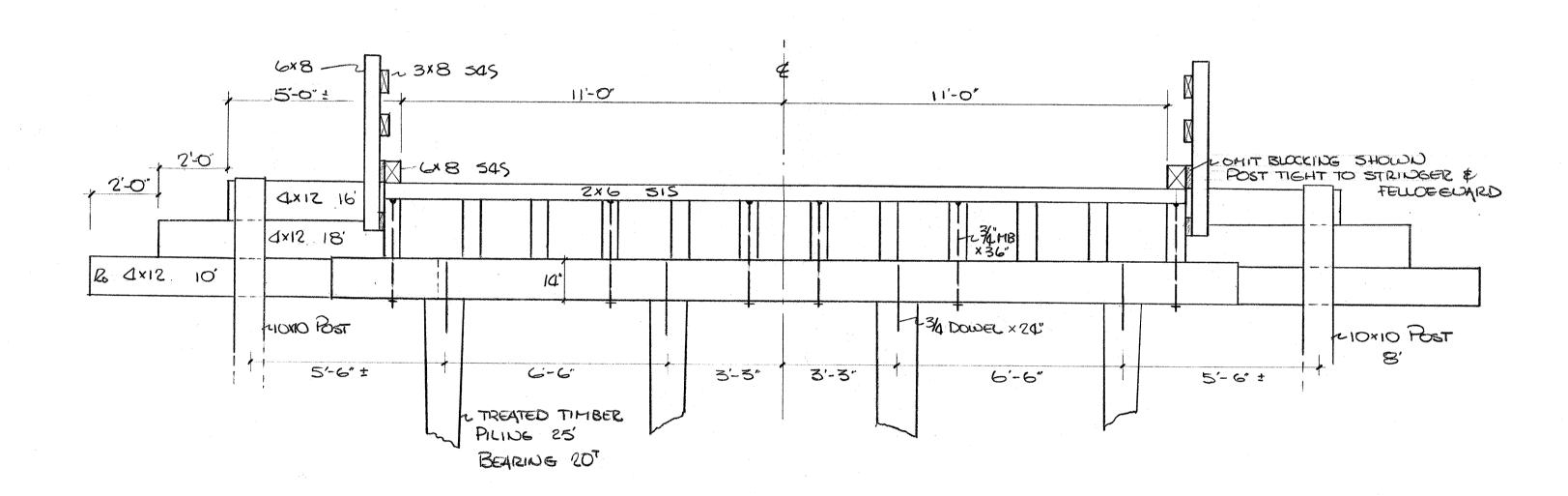

2×6 RO EVERY 3 BD RAFTER 16 4-0" CEDAR SHAKES 6×8 RAFTER P - FLAT DOUBLE LAP-× 1'-0' BLOCK AT ENDS & CENTER 23-3" TO TOP FLOOR BEAM 2-0 3x6 NAILER -- 5/80 MB XIA" DIAGIONAL IXIZ BOARDS IX3 BATTEUS RAILING - 3×8 S45 - BOLT TO POSTS WITH 1/2" CARRIAGE BOLTS POSTS - 6×8 S45 + BOLT TO FELLOE WITH 3/4 & FENDER & M.B. 1×6 FACING - 2" 3x6 NAILES 76 HBXI4" FELLOGENARD - BOUT TO STRINGER AT 4'-10" CENTERS + AT 1/3 PTS 30"HB STRINGERS - BOLT TO FLOOR BEAMS AT ENDS DECKING - NAIL TO ADJACENT PIECE TWICE BETWEEN STRINGERS WITH 40d - NAIL TO ALT. STRINGERS WITH 20d IS LINES STRINGERS - BUTT ENDS - LAP INTERIOR & NAIL TO 13'-6" ABOUE TOP FLOOR BEAMS 8'-6" LEVEL WITH TOP RAIL 1×6 FACIUG 2" 1 3×6 5/8 MB 12" CB ~ 11'-0" ~ 3/4 x 30" FEUDER BOUT ~ 6x8 \$4\$ 2×6 515 16x14 SIE - IX6 × 1'-0" UENT BLOCKS l'clear FLOOR BEAM 16×30' × 30'-6" 2 -34 HB × 46" ING FACING 122X6 PARTIAL SECTION THRU HOUSE 1/2"=1-0"

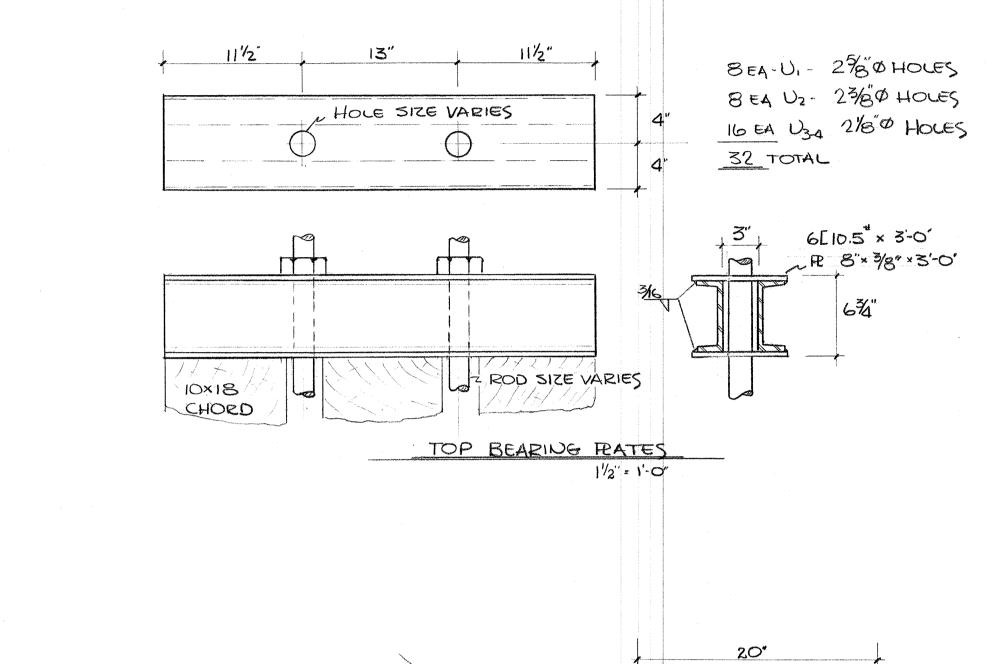


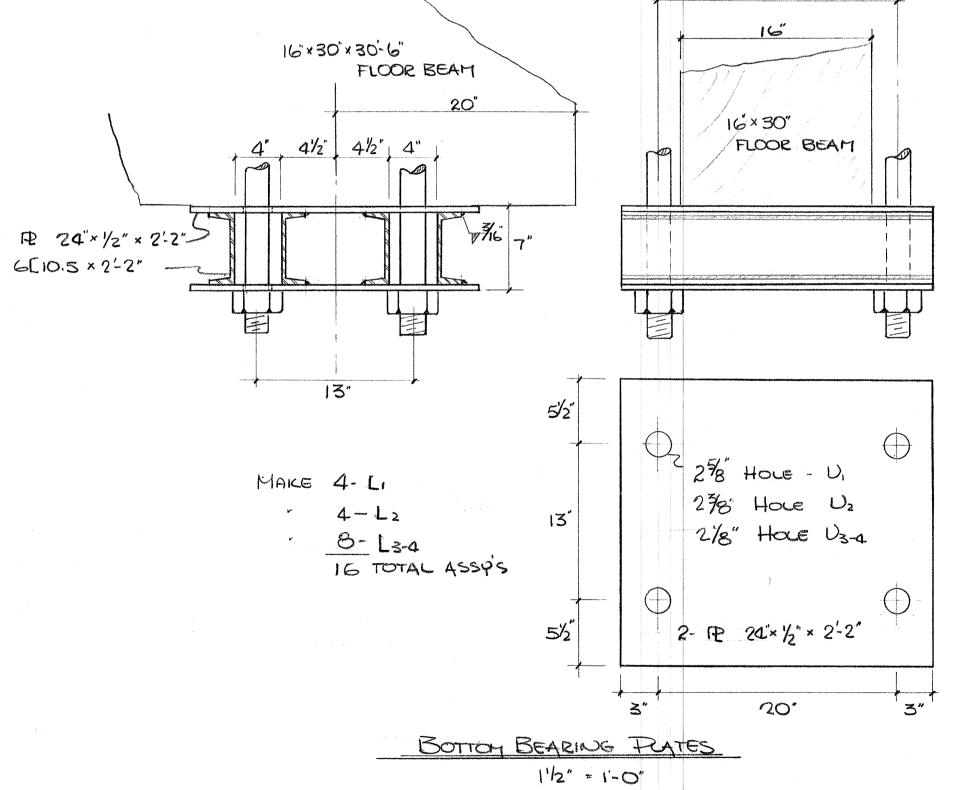
HAMILTON CONSTRUCTION CO SHIMANER BRIDGE LINN COUNTS HOUSE DETAILS

HAMILTON CONSTRUCTION CO

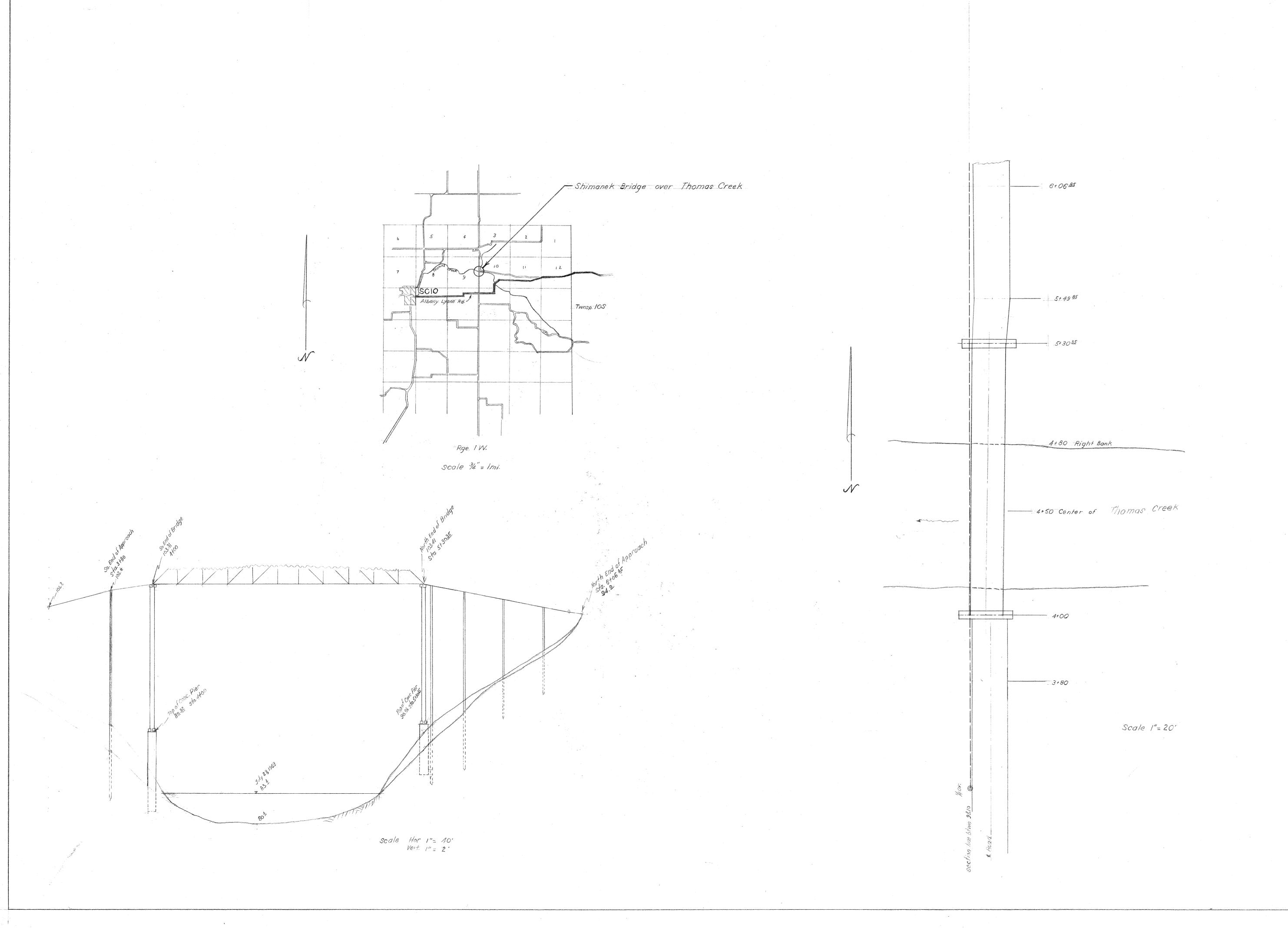

SHIMADER BRIDGE LIND COUNTS


PIER DETAILS


rieie Delaics


NOU 1965 SHEET dof 5

65 SHEET 4095 WAP


HAMILTON CONSTRUCTION CO

SHIMANER BRIDGE
LINN CO

APPROACH SPAN

BEARING DETAILS

UDD 1965 SHT SOFS WAP

Sec 9, 10 T105., RIW. SHIMANEK BRIDGE VICINITY PLAN LINN COUNTY, ORE. Date: July 1965 Scale: As Noted Drawn: R.D. #637-0.70

FILE A3-46

Appendix E.

Laboratory Analytical Data

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-83726-1

Client Project/Site: Shamanek Covered Bridge

For:

Cascade Earth Sciences Inc. 3511 Pacific Blvd Sw Albany, Oregon 97321

Attn: Jessica Penetar

Authorized for release by: 2/20/2019 12:57:21 PM

Nathan Lewis, Project Manager I (253)922-2310

nathan.lewis@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Cascade Earth Sciences Inc. Project/Site: Shamanek Covered Bridge TestAmerica Job ID: 580-83726-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	4
Certification Summary	5
Sample Summary	
Subcontract Data	7
Chain of Custody	10
Receipt Checklists	12

2

4

5

7

8

C

Case Narrative

Client: Cascade Earth Sciences Inc. Project/Site: Shamanek Covered Bridge TestAmerica Job ID: 580-83726-1

Job ID: 580-83726-1

Laboratory: TestAmerica Seattle

Narrative

Job Narrative 580-83726-1

Comments

No additional comments.

Receipt

The samples were received on 2/7/2019 9:45 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.6° C.

Subcontract non-Sister

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Subcontract Work

Method Asbestos by EPA PLM Method 600/R-93/116: This method was subcontracted to EMLab - Irvine. The subcontract laboratory certification is different from that of the facility issuing the final report.

Definitions/Glossary

Client: Cascade Earth Sciences Inc. Project/Site: Shamanek Covered Bridge TestAmerica Job ID: 580-83726-1

Glossary

QC

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)

 MDC
 Minimum Detectable Concentration (Radiochemistry)

 MDL
 Method Detection Limit

 ML
 Minimum Level (Dioxin)

 NC
 Not Calculated

 ND
 Not Detected at the reporting limit (or MDL or EDL if shown)

 PQL
 Practical Quantitation Limit

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

Quality Control

4

4

5

6

Ŏ

Accreditation/Certification Summary

Client: Cascade Earth Sciences Inc. Project/Site: Shamanek Covered Bridge TestAmerica Job ID: 580-83726-1

Laboratory: TestAmerica Seattle

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska (UST)	State Program	10	17-024	02-28-19
ANAB	DoD / DOE		L2236	01-19-22
ANAB	ISO/IEC 17025		L2236	01-19-22
California	State Program	9	2901	11-05-19
Montana (UST)	State Program	8	N/A	04-30-20
Nevada	State Program	9	WA000502019-1	07-31-19
Oregon	NELAP	10	WA100007	11-05-19
US Fish & Wildlife	Federal		LE058448-0	07-31-19
USDA	Federal		P330-14-00126	02-10-20

Sample Summary

Client: Cascade Earth Sciences Inc. Project/Site: Shamanek Covered Bridge TestAmerica Job ID: 580-83726-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-83726-1	AS-01	Solid	02/06/19 09:53	02/07/19 09:45
580-83726-2	AS-02	Solid	02/06/19 10:04	02/07/19 09:45
580-83726-3	AS-03	Solid	02/06/19 09:54	02/07/19 09:45
580-83726-4	AS-04	Solid	02/06/19 10:05	02/07/19 09:45
580-83726-5	AS-05	Solid	02/06/19 09:56	02/07/19 09:45
580-83726-6	AS-06	Solid	02/06/19 09:58	02/07/19 09:45
580-83726-7	AS-07	Solid	02/06/19 10:18	02/07/19 09:45
580-83726-8	AS-08	Solid	02/06/19 10:19	02/07/19 09:45

-0

4

5

b

0

EMLab P&K A TestAmerica Company

Report for:

Nathan Lewis TestAmerica-Seattle 5755 8th Street East Tacoma, WA 98424

Project: 580-83726-1 EML ID: 2093034 Regarding:

Approved by:

Dates of Analysis: Asbestos PLM: 02-19-2019

Approved Signatory Danny Li

Service SOPs: Asbestos PLM (EPA 40CFR App E to Sub E of Part 763 & EPA METHOD 600/R-93-116, SOP EM-AS-S-1267)

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. The results relate only to the items tested. The results include an inherent uncertainty of measurement associated with estimating percentages by polarized light microscopy. Measurement uncertainty data for sample results with >1% asbestos concentration can be provided when requested.

EMLab P&K ("the Company") shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

EMLab P&K

17461 Derian Ave, Suite 100, Irvine, CA 92614 (866) 888-6653 Fax (623) 780-7695 www.emlab.com

Client: TestAmerica-Seattle

C/O: Nathan Lewis Re: 580-83726-1

Date of Receipt: 02-08-2019 Date of Report: 02-19-2019

ASBESTOS PLM REPORT

Total Samples Submitted: 8

Total Samples Analyzed: 8

Total Samples with Layer Asbestos Content > 1%: 0

Location: AS-01 (580-83726-1)

Lab ID-Version‡: 9895702-1

Sample Layers	Asbestos Content
Black Tar	ND
Tan Woven Material	ND
Composite Non-Asbestos Content:	50% Glass Fibers
Sample Composite Homogeneity:	Moderate

Location: AS-02 (580-83726-2)

Lab ID-Version 1: 9895703-1

Sample Layers	Asbestos Content
Black Tar	ND
Tan Woven Material	ND
Composite Non-Asbestos Content:	50% Glass Fibers
Sample Composite Homogeneity:	Moderate

Location: AS-03 (580-83726-3)

Lab ID-Version‡: 9895704-1

Sample Layers	Asbestos Content		
Black Tar	ND		
Sample Composite Homogeneity: Moderate			

Location: AS-04 (580-83726-4)

Lab ID-Version‡: 9895705-1

Sample Layers	Asbestos Content	
Black Tar	ND	
Sample Composite Homogeneity: Moderate		

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by any agency of the federal government. EMLab P&K reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

Inhomogeneous samples are separated into homogeneous subsamples and analyzed individually. ND means no fibers were detected. When detected, the minimum detection and reporting limit is less than 1% unless point counting is performed. Floor tile samples may contain large amounts of interference material and it is recommended that the sample be analyzed by gravimetric point count analysis to lower the detection limit and to aid in asbestos identification.

‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

EMLab P&K, LLC EMLab ID: 2093034, Page 2 of 3

Page 8 of 12 2/20/2019

EMLab P&K

17461 Derian Ave, Suite 100, Irvine, CA 92614 (866) 888-6653 Fax (623) 780-7695 www.emlab.com

Client: TestAmerica-Seattle

C/O: Nathan Lewis Re: 580-83726-1

Date of Receipt: 02-08-2019 Date of Report: 02-19-2019

ASBESTOS PLM REPORT

Location: AS-05 (580-83726-5)

Lab ID-Version‡: 9895706-1

Sample Layers	Asbestos Content		
Black Tar	ND		
Sample Composite Homogeneity: Moderate			

Location: AS-06 (580-83726-6)

Lab	ID-V	ersion‡:	9895707-1	

Sample Layers	Asbestos Content
Black Tar	ND
Sample Composite Homogeneity:	Moderate

Location: AS-07 (580-83726-7)

Lab ID-Version‡: 9895708-1

Sample Layers	Asbestos Content	
Black Non-Fibrous Material	ND	
Sample Composite Homogeneity: Moderate		

Location: AS-08 (580-83726-8)

Lab ID-Version‡: 9895709-1

Sample Layers	Asbestos Content
Black Non-Fibrous Material	ND
Sample Composite Homogeneity:	Moderate

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by any agency of the federal government. EMLab P&K reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

Inhomogeneous samples are separated into homogeneous subsamples and analyzed individually. ND means no fibers were detected. When detected, the minimum detection and reporting limit is less than 1% unless point counting is performed. Floor tile samples may contain large amounts of interference material and it is recommended that the sample be analyzed by gravimetric point count analysis to lower the detection limit and to aid in asbestos identification.

‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

EMLab P&K, LLC EMLab ID: 2093034, Page 3 of 3

Page 9 of 12 2/20/2019

9

4

5

7

8

Date/Time:

Company:

Received by:

Date/Time:

9405 SW Nimbus Ave 580-83726 Chain of Custody		Chain of Custody Record		TestAme
3-906-9210	, and			TestAmerica Laborator
Client Contact	Project Manager: Jasmin Powta	Site Contact:	Date:	
Client Name (£5	Tel/Fax:	Lab Contact:	Carrier:	ot ot
2011	Analysis Turnaround Time			Job No.
SZID Albusais 08 4	Calendar (C) or Work Days (W)			
Pho	TAT if different from Below			-14 000
FAX	2 weeks			SDG No.
Project Name: Shungack Covered Bridge		V		
Site:	Z days	oldm oldm		Sampler:
		400		
Sample Identification	Sample Sample # of # of Date Time Type Matrix Cont.	Filtere Les		Sample Specific Notes:
AS-201	2/6/14 953	×		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
12-02	d C. H			
AS-05	300			
45-04	9			
AS-05	156			
A5-06	963			
45-07	1018			
45-04	1 101			
-	502)	メ人メメ		
0.00				
Preservation Used: 1=1ce, 2=HCl; 3=H2SO4; 4=HNO3; 5=NaOH; 6=	aOH; 6= Other	Sample Disposal (A fee ma)	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	ed longer than 1 month)
Possible Hazard Identification Non-Hazard Flammable Skin Irritant	Poison B Unknown	Return To Client	☐ Disposal By Lab ☐ Arch	Archive For Month
~		(DO NOT SEND to Brian Rave)	Brian Rabe)	
Mark Sand report to Jessia	Sund report to jessica, peretarle voluneit. con			560
Relinquished by:	Ceppany: Date/Time:		Company:	27719 945
Relinquished by:		Received by:	Company:	Date/Time:

Relinquished by:

TAL-1002 0912

580-83726 Chain of Custody

9405 SW Nimbus Ave

Chain of Custody Record

Testamerica 2/20/2019

Beaverton, OR 97008-7145 503-906-9200 Fax 503-906-9210	The state of the s				That A marian I sharetering Inc
Client Contact	Project Manager: 77 53	Jassica Prostar Si	Site Contact: Date:		COC No:
1 1	l	Щ			of 1 COCs
Address SSII Right Slub Sw	Analysis Turnaround Time Calendar (C) or Work Days (W)	and Time			Job No.
Phor	TAT if different from Below	·			
FAX	2 weeks		e		SDG No.
Project Name: Shings Givens Bridge					
ر		ole	24		
FU# 2018 2 S0024	day	Sami	bes mi		Sampler:
•	Sample Sample Sample		45 h ead Ada to L		
Sample Identification	Time	Matrix Cont.			Sample Specific Notes:
AS-01	12/chi 153		X		
AS-02	Tay	->			
AS-03	454				
AS-04	\(\mathcal{E}_{j}\)				
AS-05	456				
A5-06	858				
45-67	l'us				
45-08	1014				
Wood Composite	1205		メメアメ		
					TOTAL THE
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	aOH; 6= Other				
Possible Hazard Identification Non-Hazard Flammable Skin Irritant	Poison B C Unknown	MANON CONTRACTOR	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mont	assessed if samples are retained long	d longer than 1 month) e ForMonths
Special Instructions/QC Requirements & Comments:) ~. w.		(DO NOT SEAD to BLIEN Rabe)	Rake)	
These Sund report to Jestica. Peretar@ Valmont.com	a. Penetar@ valon			`	5600
Relinquished by:	Company: CES	Date/Time:			217/19 542
	Company: AGI		Received by Kan	TASE	24.19 620
Relinquished by:	Company:	Bate/Time:	Received by:		Date/Time:
TAL-1002 0912					

Page 11 of 12

1

Login Sample Receipt Checklist

Client: Cascade Earth Sciences Inc. Job Number: 580-83726-1

Login Number: 83726 List Source: TestAmerica Seattle

List Number: 1

Creator: O'Connell, Jason I

Creator. O Commen, Jason 1		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4

_

0

8

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-83726-2

Client Project/Site: Shamanck Covered Bridge

For:

Cascade Earth Sciences Inc. 3511 Pacific Blvd Sw Albany, Oregon 97321

Attn: Jessica Penetar

Knistène D. allen

Authorized for release by: 2/13/2019 5:31:21 PM
Kristine Allen, Manager of Project Management (253)248-4970
kristine.allen@testamericainc.com

Designee for

Nathan Lewis, Project Manager I (253)922-2310 nathan.lewis@testamericainc.com

·····LINKS ·······

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Cascade Earth Sciences Inc. Project/Site: Shamanck Covered Bridge TestAmerica Job ID: 580-83726-2

Table of Contents

Cover Page	1
Table of Contents	
Case Narrative	3
Definitions	4
Client Sample Results	
QC Sample Results	6
Chronicle	7
Certification Summary	8
Sample Summary	
Chain of Custody	10
Receipt Checklists	12

3

4

£

Q

9

Case Narrative

Client: Cascade Earth Sciences Inc. Project/Site: Shamanck Covered Bridge TestAmerica Job ID: 580-83726-2

Job ID: 580-83726-2

Laboratory: TestAmerica Seattle

Narrative

Job Narrative 580-83726-2

Comments

No additional comments.

Receipt

The samples were received on 2/7/2019 9:45 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.6° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

5

3

4

5

6

6

9

Definitions/Glossary

Client: Cascade Earth Sciences Inc. Project/Site: Shamanck Covered Bridge

Not Calculated

Quality Control

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Not Detected at the reporting limit (or MDL or EDL if shown)

Relative Percent Difference, a measure of the relative difference between two points

Reporting Limit or Requested Limit (Radiochemistry)

TestAmerica Job ID: 580-83726-2

Glossary

NC

ND

PQL

QC

RER

RPD TEF

TEQ

RL

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)

2/13/2019

4

4

5

6

10

10

. .

Client Sample Results

Client: Cascade Earth Sciences Inc. Project/Site: Shamanck Covered Bridge TestAmerica Job ID: 580-83726-2

Lab Sample ID: 580-83726-9

Client Sample ID: Wood Composite

Date Collected: 02/06/19 12:05 Matrix: Solid Date Received: 02/07/19 09:45

Percent Solids: 87.7

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		1.1		mg/Kg	₽	02/12/19 15:33	02/13/19 12:27	1
ND		1.4		mg/Kg	₽	02/12/19 15:33	02/13/19 12:27	1
1.8		1.7		mg/Kg	₽	02/12/19 15:33	02/13/19 12:27	1
Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
87.7		0.1		%			02/11/19 06:18	1
12.3		0.1		%			02/11/19 06:18	1
	ND ND 1.8 Result 87.7	ND 1.8 Result Qualifier 87.7	ND 1.1 ND 1.4 1.8 1.7 Result Qualifier RL	ND 1.1 ND 1.4 1.8 1.7 Result Qualifier RL RL 87.7 0.1	ND	ND	ND 1.1 mg/Kg □ 02/12/19 15:33 ND 1.4 mg/Kg □ 02/12/19 15:33 1.8 1.7 mg/Kg □ 02/12/19 15:33 Result Qualifier RL RL Unit D Prepared 87.7 0.1 %	ND 1.1 mg/Kg © 02/12/19 15:33 02/13/19 12:27 ND 1.4 mg/Kg © 02/12/19 15:33 02/13/19 12:27 1.8 1.7 mg/Kg © 02/12/19 15:33 02/13/19 12:27 Result Qualifier RL RL Unit D Prepared Analyzed 87.7 0.1 % 02/11/19 06:18

QC Sample Results

Client: Cascade Earth Sciences Inc. Project/Site: Shamanck Covered Bridge TestAmerica Job ID: 580-83726-2

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 580-294515/23-A

Lab Sample ID: LCS 580-294515/24-A

Lab Sample ID: LCSD 580-294515/25-A

Matrix: Solid

Matrix: Solid

Matrix: Solid

Analysis Batch: 294575

Lead

Analysis Batch: 294575

Client Sampl	e ID:	Meth	od	Blank
P	rep	Type:	Tot	al/NA

Prep Batch: 294515

	IVID	INID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		1.0		mg/Kg		02/12/19 15:33	02/13/19 11:52	1
Chromium	ND		1.3		mg/Kg		02/12/19 15:33	02/13/19 11:52	1
Lead	ND		1.5		mg/Kg		02/12/19 15:33	02/13/19 11:52	1

MD MD

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 294515

Analysis Batch: 294575 Spike LCS LCS %Rec. Result Qualifier Analyte Added Unit %Rec Limits Cadmium 50.0 46.1 mg/Kg 92 80 - 120 Chromium 50.0 49.2 mg/Kg 98 80 - 120

47.7

mg/Kg

50.0

Client Sample ID: Lab Control Sample Dup

95

Prep Type: Total/NA
Prep Batch: 294515

80 - 120

LCSD LCSD Spike Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Cadmium 50.0 46.5 mg/Kg 93 80 - 120 20 Chromium 50.0 50.0 mg/Kg 100 80 - 120 20 2 Lead 50.0 47.7 mg/Kg 95 80 - 120 0 20

9

Lab Chronicle

Client: Cascade Earth Sciences Inc. Project/Site: Shamanck Covered Bridge TestAmerica Job ID: 580-83726-2

Client Sample ID: Wood Composite

Client Sample ID: Wood Composite

Lab Sample ID: 580-83726-9 Date Collected: 02/06/19 12:05

Matrix: Solid

Date Received: 02/07/19 09:45

Date Collected: 02/06/19 12:05

Date Received: 02/07/19 09:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	294424	02/11/19 06:18	BAH	TAL SEA

Lab Sample ID: 580-83726-9

Matrix: Solid

Percent Solids: 87.7

Batch Batch Dilution Batch Prepared Prep Type Method Run Factor Туре Number or Analyzed Lab Analyst 3050B Total/NA Prep 294515 TAL SEA 02/12/19 15:33 JKM Total/NA Analysis 6010C 294575 02/13/19 12:27 HJM TAL SEA

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

TestAmerica Seattle

Accreditation/Certification Summary

Client: Cascade Earth Sciences Inc. Project/Site: Shamanck Covered Bridge TestAmerica Job ID: 580-83726-2

Laboratory: TestAmerica Seattle

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska (UST)	State Program	10	17-024	02-28-19
ANAB	DoD / DOE		L2236	01-19-22
ANAB	ISO/IEC 17025		L2236	01-19-22
California	State Program	9	2901	11-05-19
Montana (UST)	State Program	8	N/A	04-30-20
Nevada	State Program	9	WA000502019-1	07-31-19
Oregon	NELAP	10	WA100007	11-05-19
US Fish & Wildlife	Federal		LE058448-0	07-31-19
USDA	Federal		P330-14-00126	02-10-20
Washington	State Program	10	C553	02-17-19

Sample Summary

Client: Cascade Earth Sciences Inc. Project/Site: Shamanck Covered Bridge TestAmerica Job ID: 580-83726-2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-83726-9	Wood Composite	Solid	02/06/19 12:05	02/07/19 09:45

9

5

0

9

Form No. CA-C-WI-002, Rev. 3.1, dated 07/12/2012 TestAmerica TestAmerica Laboratories, Inc. Months Sample Specific Notes: 5601 2719 Date/Time: Date/Time: SDG No. COC No: Sampler Job No. Company: (DO NOT SEND to Brian Kabe) 9 10 Carrier: Date: Chain of Custody Record Beturn To Client メイメメ Telf Received by: Received b Received Project Manager: Tasnica Pearlas Site Contact: Lab Contact: Filtered Sample 3/1/1 1945 Date/Time: # of Cont. Date/Time: Please Send report to jessica. Penetar@yolmont.com Matrix Analysis Turnaround Time Calendar (C) or Work Days (W) Unknown Sample Type TAT if different from Below 2 days 2 weeks 1 week 1 day 5021 Sample Time 953 958 18 18 156 954 101 Poison B Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Company: 2/1/4 Sample Date Company: Company: Tel/Fax: 580-83726 Chain of Custody Phone 541-426-777 Skin Irritant Project Name: Shungack Covered Bridge Special Instructions/QC Requirements & Comments: Albuny, 08 97321 Pacific Blud Wood Composite Sample Identification Client Contact 7018220024 503-906-9200 Fax 503-906-9210 Possible Hazard Identification Beaverton, OR 97008-7145 AS-02 AS-03 45-05 A5-06 45-04 AS-07 AS-09 18-0 9405 SW Nimbus Ave ished by: Relinquished by: City/State/Zip Client Name FAL-1002 0912 Address # O d Site:

Page 10 of 12

2/13/2019

10

580-83726 Chain of Custody

Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING			TO \$ > 0.2.00		
2	/1	3	/2	01	9

	Date/Time:	Company:	Received by:		Company:	Relinquished by:
620	Date/Titne: ウン・ ウェー な	Company	Received by Keuntline	2 7/16 Hes	Company:	
G42	Date/Time:	Company:	Received by:	Date/Time:	Company:	Relinquished by:
,	5600	(Kale)	(DO NOT send to Brian Kabe)		2. Penetare val	Please Send report to jessica. Penetar@ valanent.com
Months	Archive For	Disposal By Lab	Return To Client Disp	Unknown []	Poison B	Non-Hazard Flammable Skin britant Special Instructions/QC Requirements & Comments:
month)	A fee may be assessed if samples are retained longer than 1 month)	essed if samples are	Sample Disposal (A fee may be ass	**************************************	OH; 6= Other	Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Possible Hazard Identification
		AND				
						J. S. Char. Sack
	and the second s				5041	
					1,101	45-04
The state of the s					1018	AS-07
Pag					968	A5-06
ge 1					156	45-05
1 of					\$,	AS-DY
12					454	AS-03
ACCURACY CONTRACTOR CO	The state of the s			- 3	l'on4	AS-02
			X .		26/14/953	15-01
Notes:	Sample Specific Notes:			Sample # of Cont. Ellered S	Sample Sample S Date Time	Sample Identification
	Sampler:		usi uil		[] j day	PO# 2018120024
			tes un Tcl		l week	Site: Shungark Covered Bridge
	SDG No.		E	eks	2 weeks	FAX
				Below	TAT if different from Below	
				Days (W)	Calendar (C) or Work Days (W)	رعم
	Job No.				Analysis Turnaround Time	Address 3511 Pu.h. Blub SW
COCs	COC No:	ior.	Site Contact: Date:	Lassia tratac Si	Tel/Fax:	Client Name (£5
lestAmerica Laboratories, Inc.	TestAmerica L			7	1	503-908-9200 F8X 303-908-9210
THE LEADER IN ENVIRONMENTAL TESTING	THE LEADER IN EI		Chain of Custody Record	Chain	hain of Custody	580-83726 C

Login Sample Receipt Checklist

Client: Cascade Earth Sciences Inc.

Job Number: 580-83726-2

Login Number: 83726 List Source: TestAmerica Seattle

List Number: 1

Creator: O'Connell, Jason I

Creator: O'Connell, Jason I		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

Λ

5

6

8

9

10

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-82025-1

Client Project/Site: Shimanek Covered Bridge

For:

Cascade Earth Sciences Inc. 3511 Pacific Blvd Sw Albany, Oregon 97321

Attn: Jessica Penetar

Authorized for release by: 12/11/2018 4:37:11 PM

Nathan Lewis, Project Manager I (253)922-2310

nathan.lewis@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge TestAmerica Job ID: 580-82025-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	5
Client Sample Results	6
QC Sample Results	10
Chronicle	24
Certification Summary	25
Sample Summary	26
Chain of Custody	27
Receipt Checklists	29

4

5

8

9

Case Narrative

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge TestAmerica Job ID: 580-82025-1

Job ID: 580-82025-1

Laboratory: TestAmerica Seattle

Narrative

Job Narrative 580-82025-1

Comments

No additional comments.

Receipt

The sample was received on 11/23/2018 10:50 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.3° C.

GC/MS VOA

Method(s) 5035: The following sample was provided to the laboratory with a significantly different initial weight than that required by the reference method: SS-01 (580-82025-1). The method requires 8-12 grams. The amount provided was above this range.

Method(s) 8260C: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 580-289674 and analytical batch 580-289687 recovered outside control limits for the following analytes: Vinyl chloride, Trichlorofluoromethane and Dichlorodifluoromethane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been qualified and reported.

Method(s) 8260C: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for batch preparation batch 580-289674 and analytical batch 580-289687 recovered outside control limits for the following analytes: Vinyl chloride and Trichlorofluoromethane.

Method(s) 8260C: The laboratory control sample and/or the laboratory control sample duplicate (LCS/LCSD) for preparation batch 580-289674 and analytical batch 580-289687 recovered outside control limits for the following analyte(s): 1,2,3-Trichlorobenzene. 1,2,3-Trichlorobenzene has been identified as a poor performing analyte when analyzed using this method; therefore, re-extraction/re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270C SIM: The surrogate recovery for the method blank associated with preparation batch 580-290094 and analytical batch 580-290528 was outside the upper control limits. All samples were within recovery limits, therefore the data are reported.

Method(s) 8270C SIM: The following sample was diluted due to the nature of the sample matrix: SS-01 (580-82025-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8081A: The following samples were diluted due to the nature of the sample matrix: SS-01 (580-82025-1), (580-82025-C-1-F MS) and (580-82025-C-1-G MSD). Elevated reporting limits (RLs) are provided.

Method(s) NWTPH-Dx: Continuing calibration verification (CCV) standard associated with batch 580-290662 recovered outside %Drift acceptance criteria for o-Terphenyl surrogate. The %Recovery is within acceptance criteria for the surrogate in the CCV and associated samples; therefore, the data are qualified and reported. The following sample is impacted: (CCVRT 580-290662/3).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

4

5

6

7

8

9

10

TestAmerica Seattle 12/11/2018

Case Narrative

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge TestAmerica Job ID: 580-82025-1

Job ID: 580-82025-1 (Continued)

Laboratory: TestAmerica Seattle (Continued)

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

A

0

Definitions/Glossary

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge TestAmerica Job ID: 580-82025-1

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

* LCS or LCSD is outside acceptance limits.

* RPD of the LCS and LCSD exceeds the control limits

GC/MS Semi VOA

X Surrogate is outside control limits

GC Semi VOA

Qualifier Qualifier Description

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)
MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

4

6

0

1 0

1

Client Sample Results

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Client Sample ID: SS-01

Date Collected: 11/21/18 08:01 Date Received: 11/23/18 10:50 TestAmerica Job ID: 580-82025-1

Lab Sample ID: 580-82025-1

	•
Matrix: Solid	t
Percent Solids: 79.6	3

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	ND	160	ug/Kg	₩ ₩		11/27/18 00:10	
Chloromethane	ND	81	ug/Kg			11/27/18 00:10	
Vinyl chloride	ND *	120	ug/Kg			11/27/18 00:10	
Bromomethane	ND	160	ug/Kg	Ψ.		11/27/18 00:10	
Chloroethane	ND	330	ug/Kg			11/27/18 00:10	
Trichlorofluoromethane	ND *	160	ug/Kg	<u>.</u>		11/27/18 00:10	
1,1-Dichloroethene	ND	33	ug/Kg	₩.		11/27/18 00:10	
Methylene Chloride	ND	200	ug/Kg	:		11/27/18 00:10	
trans-1,2-Dichloroethene	ND	49	ug/Kg	<u>.</u> .		11/27/18 00:10	
1,1-Dichloroethane	ND	33	ug/Kg	₽		11/27/18 00:10	
2,2-Dichloropropane	ND	33	ug/Kg	☼	11/26/18 16:58	11/27/18 00:10	
cis-1,2-Dichloroethene	ND	49	ug/Kg		11/26/18 16:58	11/27/18 00:10	
Bromochloromethane	ND	33	ug/Kg	₽	11/26/18 16:58	11/27/18 00:10	
Chloroform	ND	33	ug/Kg	₩	11/26/18 16:58	11/27/18 00:10	
1,1,1-Trichloroethane	ND	33	ug/Kg	₩	11/26/18 16:58	11/27/18 00:10	
Carbon tetrachloride	ND	16	ug/Kg	₩	11/26/18 16:58	11/27/18 00:10	
1,1-Dichloropropene	ND	33	ug/Kg	₩	11/26/18 16:58	11/27/18 00:10	
Benzene	ND	24	ug/Kg	☼	11/26/18 16:58	11/27/18 00:10	
1,2-Dichloroethane	ND	16	ug/Kg	₩	11/26/18 16:58	11/27/18 00:10	
Trichloroethene	ND	49	ug/Kg	☼	11/26/18 16:58	11/27/18 00:10	
1,2-Dichloropropane	ND	16	ug/Kg	≎	11/26/18 16:58	11/27/18 00:10	
Dibromomethane	ND	49	ug/Kg		11/26/18 16:58	11/27/18 00:10	
Bromodichloromethane	ND	49	ug/Kg	☼	11/26/18 16:58	11/27/18 00:10	
cis-1,3-Dichloropropene	ND	16	ug/Kg	☼	11/26/18 16:58	11/27/18 00:10	
Toluene	ND	120	ug/Kg		11/26/18 16:58	11/27/18 00:10	
trans-1,3-Dichloropropene	ND	33	ug/Kg	₩	11/26/18 16:58	11/27/18 00:10	
1,1,2-Trichloroethane	ND	16	ug/Kg	₩		11/27/18 00:10	
Tetrachloroethene	ND	33	ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/27/18 00:10	
1,3-Dichloropropane	ND	49	ug/Kg	₩		11/27/18 00:10	
Dibromochloromethane	ND	33	ug/Kg	₩		11/27/18 00:10	
1,2-Dibromoethane	ND	16	ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/27/18 00:10	
Chlorobenzene	ND	33	ug/Kg	₩		11/27/18 00:10	
Ethylbenzene	ND	33	ug/Kg	₩		11/27/18 00:10	
1,1,1,2-Tetrachloroethane	ND	33	ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/27/18 00:10	
1,1,2,2-Tetrachloroethane	ND	16	ug/Kg	₩		11/27/18 00:10	
m-Xylene & p-Xylene	ND	160	ug/Kg	₩		11/27/18 00:10	
o-Xylene	ND	49	ug/Kg			11/27/18 00:10	
Styrene	ND	33	ug/Kg	₩		11/27/18 00:10	
Bromoform	ND	160	ug/Kg ug/Kg	≎		11/27/18 00:10	
				· · · · · · · · · · · · · · · · · · ·			
Isopropylbenzene	ND	33	ug/Kg			11/27/18 00:10	
Bromobenzene	ND ND	81	ug/Kg	₩ ₩		11/27/18 00:10	
N-Propylbenzene	ND	33	ug/Kg	¥.		11/27/18 00:10	
1,2,3-Trichloropropane	ND ND	33	ug/Kg	₩		11/27/18 00:10	
2-Chlorotoluene	ND	33	ug/Kg	₩		11/27/18 00:10	
1,3,5-Trimethylbenzene	ND		ug/Kg			11/27/18 00:10	
4-Chlorotoluene	ND	33	ug/Kg	ά.		11/27/18 00:10	
t-Butylbenzene	ND	33	ug/Kg	*		11/27/18 00:10	
1,2,4-Trimethylbenzene	ND	33	ug/Kg	≎	11/26/18 16:58	11/27/18 00:10	

TestAmerica Seattle

Page 6 of 29 12/11/2018

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge TestAmerica Job ID: 580-82025-1

Client Sample ID: SS-01

Lab Sample ID: 580-82025-1

Matrix: Solid

Date Collected: 11/21/18 08:01 Date Received: 11/23/18 10:50 Percent Solids: 79.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3-Dichlorobenzene	ND		49		ug/Kg	<u></u>	11/26/18 16:58	11/27/18 00:10	1
4-Isopropyltoluene	ND		33		ug/Kg	☼	11/26/18 16:58	11/27/18 00:10	1
1,4-Dichlorobenzene	ND		49		ug/Kg	₽	11/26/18 16:58	11/27/18 00:10	1
n-Butylbenzene	ND		120		ug/Kg	☼	11/26/18 16:58	11/27/18 00:10	1
1,2-Dichlorobenzene	ND		33		ug/Kg	☼	11/26/18 16:58	11/27/18 00:10	1
1,2-Dibromo-3-Chloropropane	ND		200		ug/Kg	₽	11/26/18 16:58	11/27/18 00:10	1
1,2,4-Trichlorobenzene	ND		49		ug/Kg	☼	11/26/18 16:58	11/27/18 00:10	1
1,2,3-Trichlorobenzene	ND	*	120		ug/Kg	☼	11/26/18 16:58	11/27/18 00:10	1
Hexachlorobutadiene	ND		120		ug/Kg	₽	11/26/18 16:58	11/27/18 00:10	1
Naphthalene	ND		81		ug/Kg	☼	11/26/18 16:58	11/27/18 00:10	1
Methyl tert-butyl ether	ND		33		ug/Kg	₩	11/26/18 16:58	11/27/18 00:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	106		80 - 120				11/26/18 16:58	11/27/18 00:10	1
4-Bromofluorobenzene (Surr)	101		80 - 120				11/26/18 16:58	11/27/18 00:10	1
Dibromofluoromethane (Surr)	99		80 - 120				11/26/18 16:58	11/27/18 00:10	1
Trifluorotoluene (Surr)	100		80 - 120				11/26/18 16:58	11/27/18 00:10	1
1,2-Dichloroethane-d4 (Surr)	100		80 - 121				11/26/18 16:58	11/27/18 00:10	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dalapon	ND		190		ug/Kg	\	12/03/18 12:34	12/06/18 18:01	1
Dicamba	ND		110		ug/Kg	₩	12/03/18 12:34	12/06/18 18:01	1
Mecoprop	ND		110		ug/Kg	₩	12/03/18 12:34	12/06/18 18:01	1
MCPA	ND		110		ug/Kg	₽	12/03/18 12:34	12/06/18 18:01	1
Dichlorprop	ND		110		ug/Kg	₩	12/03/18 12:34	12/06/18 18:01	1
2,4-D	ND		110		ug/Kg	₩	12/03/18 12:34	12/06/18 18:01	1
Pentachlorophenol	ND		190		ug/Kg	₩	12/03/18 12:34	12/06/18 18:01	1
Silvex (2,4,5-TP)	ND		110		ug/Kg	₩	12/03/18 12:34	12/06/18 18:01	1
2,4,5-T	ND		110		ug/Kg	₩	12/03/18 12:34	12/06/18 18:01	1
Dinoseb	ND		190		ug/Kg	₩	12/03/18 12:34	12/06/18 18:01	1
2,4-DB	ND		110		ug/Kg	≎	12/03/18 12:34	12/06/18 18:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	83		53 - 150				12/03/18 12:34	12/06/18 18:01	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND —	27		ug/Kg	-	12/01/18 20:47	12/10/18 15:41	5
2-Methylnaphthalene	ND	27		ug/Kg	₩	12/01/18 20:47	12/10/18 15:41	5
1-Methylnaphthalene	ND	27		ug/Kg	₩	12/01/18 20:47	12/10/18 15:41	5
Acenaphthylene	ND	27		ug/Kg	₽	12/01/18 20:47	12/10/18 15:41	5
Acenaphthene	ND	27		ug/Kg	₩	12/01/18 20:47	12/10/18 15:41	5
Fluorene	ND	27		ug/Kg	₩	12/01/18 20:47	12/10/18 15:41	5
Phenanthrene	ND	27		ug/Kg	₩	12/01/18 20:47	12/10/18 15:41	5
Anthracene	ND	27		ug/Kg	₩	12/01/18 20:47	12/10/18 15:41	5
Fluoranthene	ND	27		ug/Kg	₩	12/01/18 20:47	12/10/18 15:41	5
Pyrene	ND	27		ug/Kg	☼	12/01/18 20:47	12/10/18 15:41	5
Benzo[a]anthracene	ND	27		ug/Kg	₩	12/01/18 20:47	12/10/18 15:41	5
Chrysene	ND	27		ug/Kg	₩	12/01/18 20:47	12/10/18 15:41	5

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge TestAmerica Job ID: 580-82025-1

Client Sample ID: SS-01 Date Collected: 11/21/18 08:01 Lab Sample ID: 580-82025-1

Matrix: Solid

Percent Solids: 79.6

Date Received: 11/23/18 1	0:50		
Method: 8270C SIM - Ser	mivolatile Organic Compound	s (GC/MS	SIM) (Continued)
Analyte	Result Qualifier	RL	MDL Unit

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzo[b]fluoranthene	ND	27	ug/Kg	<u> </u>	12/01/18 20:47	12/10/18 15:41	5
Benzo[k]fluoranthene	ND	27	ug/Kg	φ.	12/01/18 20:47	12/10/18 15:41	5
Benzo[a]pyrene	ND	27	ug/Kg	☼	12/01/18 20:47	12/10/18 15:41	5
Indeno[1,2,3-cd]pyrene	ND	27	ug/Kg	₩	12/01/18 20:47	12/10/18 15:41	5
Dibenz(a,h)anthracene	ND	27	ug/Kg	☼	12/01/18 20:47	12/10/18 15:41	5
Benzo[g,h,i]perylene	ND	27	ug/Kg	☼	12/01/18 20:47	12/10/18 15:41	5

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
Terphenyl-d14	109		57 - 120	12/01/18 20:47 12/10/18 15:4	1 5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		17		ug/Kg	₩	12/04/18 14:42	12/06/18 18:15	5
alpha-BHC	ND		11		ug/Kg	☼	12/04/18 14:42	12/06/18 18:15	5
beta-BHC	ND		28		ug/Kg	₩	12/04/18 14:42	12/06/18 18:15	5
delta-BHC	ND		17		ug/Kg		12/04/18 14:42	12/06/18 18:15	5
gamma-BHC (Lindane)	ND		11		ug/Kg	₩	12/04/18 14:42	12/06/18 18:15	5
4,4'-DDD	ND		11		ug/Kg	₩	12/04/18 14:42	12/06/18 18:15	5
4,4'-DDE	ND		11		ug/Kg		12/04/18 14:42	12/06/18 18:15	5
4,4'-DDT	ND		11		ug/Kg	₩	12/04/18 14:42	12/06/18 18:15	5
Dieldrin	ND		11		ug/Kg	₩	12/04/18 14:42	12/06/18 18:15	5
Endosulfan I	ND		11		ug/Kg	₩	12/04/18 14:42	12/06/18 18:15	5
Endosulfan II	ND		11		ug/Kg	₩	12/04/18 14:42	12/06/18 18:15	5
Endosulfan sulfate	ND		11		ug/Kg	₩	12/04/18 14:42	12/06/18 18:15	5
Endrin	ND		11		ug/Kg	₩	12/04/18 14:42	12/06/18 18:15	5
Endrin aldehyde	ND		110		ug/Kg	₩	12/04/18 14:42	12/06/18 18:15	5
Heptachlor	ND		17		ug/Kg	₩	12/04/18 14:42	12/06/18 18:15	5
Heptachlor epoxide	ND		17		ug/Kg	₽	12/04/18 14:42	12/06/18 18:15	5
Methoxychlor	ND		56		ug/Kg	₩	12/04/18 14:42	12/06/18 18:15	5
Endrin ketone	ND		11		ug/Kg	₩	12/04/18 14:42	12/06/18 18:15	5
Toxaphene	ND		560		ug/Kg	\$	12/04/18 14:42	12/06/18 18:15	5
cis-Chlordane	ND		11		ug/Kg	₩	12/04/18 14:42	12/06/18 18:15	5
trans-Chlordane	ND		17		ug/Kg	₩	12/04/18 14:42	12/06/18 18:15	5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	93		50 - 123	12/04/18 14:42	12/06/18 18:15	5
DCB Decachlorobiphenyl	84		43 - 129	12/04/18 14:42	12/06/18 18:15	5

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

0.023 0.023 0.023 0.023	mg/Kg mg/Kg mg/Kg	ф ф	12/04/18 14:42	12/06/18 15:33 12/06/18 15:33 12/06/18 15:33	1 1 1
0.023	mg/Kg				1 1
		₽	12/04/18 14:42	12/06/18 15:33	1
0.023					
0.023	mg/Kg	₽	12/04/18 14:42	12/06/18 15:33	1
0.023	mg/Kg	₩	12/04/18 14:42	12/06/18 15:33	1
0.023	mg/Kg	₽	12/04/18 14:42	12/06/18 15:33	1
0.023	mg/Kg	*	12/04/18 14:42	12/06/18 15:33	1
	0.023	0.023 mg/Kg	0.023 mg/Kg	0.023 mg/Kg 🌣 12/04/18 14:42	0.023 mg/Kg © 12/04/18 14:42 12/06/18 15:33

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	70	54 - 142	12/04/18 14:42	12/06/18 15:33	1
Tetrachloro-m-xylene	93	58 - 122	12/04/18 14:42	12/06/18 15:33	1

TestAmerica Seattle

Page 8 of 29 12/11/2018

Client Sample Results

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge TestAmerica Job ID: 580-82025-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	ND		290		mg/Kg	<u> </u>	12/01/18 19:40	12/11/18 02:40	5
Motor Oil (>C24-C36)	820		290		mg/Kg	₩	12/01/18 19:40	12/11/18 02:40	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	84		50 - 150				12/01/18 19:40	12/11/18 02:40	5
Method: 6010B - Metals (I	CP)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		2.5		mg/Kg	₩	11/30/18 11:36	12/03/18 14:47	1
Barium	110		0.41		mg/Kg	≎	11/30/18 11:36	12/03/18 14:47	1
Cadmium	ND		0.82		mg/Kg	≎	11/30/18 11:36	12/03/18 14:47	1
Chromium	5.7		1.1		mg/Kg		11/30/18 11:36	12/03/18 14:47	1
Lead	4.4		1.2		mg/Kg	☼	11/30/18 11:36	12/03/18 14:47	1
Selenium	ND		4.1		mg/Kg	☼	11/30/18 11:36	12/03/18 14:47	1
Silver	ND		2.1		mg/Kg		11/30/18 11:36	12/03/18 14:47	1
Method: 7471A - Mercury	(CVAA)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.023		mg/Kg	- -	11/27/18 12:00	11/27/18 16:12	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	79.6		0.1		%			11/26/18 13:56	1
Percent Moisture	20.4		0.1		%			11/26/18 13:56	1

12/11/2018

QC Sample Results

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge TestAmerica Job ID: 580-82025-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 580-289674/1-A

Matrix: Solid

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 289687	МВ	MB						Prep Batch:	
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	ND		200		ug/Kg	— <u> </u>	-	11/26/18 18:58	
Chloromethane	ND		100		ug/Kg			11/26/18 18:58	
Vinyl chloride	ND		150		ug/Kg			11/26/18 18:58	
Bromomethane	ND		200		ug/Kg			11/26/18 18:58	
Chloroethane	ND		400		ug/Kg			11/26/18 18:58	
Trichlorofluoromethane	ND		200		ug/Kg			11/26/18 18:58	
1,1-Dichloroethene	ND		40		ug/Kg			11/26/18 18:58	
Methylene Chloride	ND		250		ug/Kg			11/26/18 18:58	
trans-1,2-Dichloroethene	ND		60		ug/Kg			11/26/18 18:58	
1,1-Dichloroethane	ND		40		ug/Kg			11/26/18 18:58	
2,2-Dichloropropane	ND		40		ug/Kg			11/26/18 18:58	
cis-1,2-Dichloroethene	ND		60		ug/Kg			11/26/18 18:58	
Bromochloromethane	ND		40		ug/Kg			11/26/18 18:58	
	ND ND								
Chloroform			40		ug/Kg			11/26/18 18:58	
1,1,1-Trichloroethane	ND		40		ug/Kg			11/26/18 18:58	
Carbon tetrachloride	ND		20		ug/Kg			11/26/18 18:58	
1,1-Dichloropropene	ND		40		ug/Kg			11/26/18 18:58	
Benzene	ND		30		ug/Kg			11/26/18 18:58	
1,2-Dichloroethane	ND		20		ug/Kg			11/26/18 18:58	
Trichloroethene	ND		60		ug/Kg			11/26/18 18:58	
1,2-Dichloropropane	ND		20		ug/Kg			11/26/18 18:58	
Dibromomethane	ND		60		ug/Kg			11/26/18 18:58	
Bromodichloromethane	ND		60		ug/Kg			11/26/18 18:58	
cis-1,3-Dichloropropene	ND		20		ug/Kg			11/26/18 18:58	
Toluene	ND		150		ug/Kg			11/26/18 18:58	
trans-1,3-Dichloropropene	ND		40		ug/Kg		11/26/18 16:00	11/26/18 18:58	
1,1,2-Trichloroethane	ND		20		ug/Kg		11/26/18 16:00	11/26/18 18:58	
Tetrachloroethene	ND		40		ug/Kg		11/26/18 16:00	11/26/18 18:58	
1,3-Dichloropropane	ND		60		ug/Kg		11/26/18 16:00	11/26/18 18:58	
Dibromochloromethane	ND		40		ug/Kg		11/26/18 16:00	11/26/18 18:58	
1,2-Dibromoethane	ND		20		ug/Kg		11/26/18 16:00	11/26/18 18:58	
Chlorobenzene	ND		40		ug/Kg		11/26/18 16:00	11/26/18 18:58	
Ethylbenzene	ND		40		ug/Kg		11/26/18 16:00	11/26/18 18:58	
1,1,1,2-Tetrachloroethane	ND		40		ug/Kg		11/26/18 16:00	11/26/18 18:58	
1,1,2,2-Tetrachloroethane	ND		20		ug/Kg		11/26/18 16:00	11/26/18 18:58	
m-Xylene & p-Xylene	ND		200		ug/Kg		11/26/18 16:00	11/26/18 18:58	
o-Xylene	ND		60		ug/Kg		11/26/18 16:00	11/26/18 18:58	
Styrene	ND		40		ug/Kg		11/26/18 16:00	11/26/18 18:58	
Bromoform	ND		200		ug/Kg		11/26/18 16:00	11/26/18 18:58	
Isopropylbenzene	ND		40		ug/Kg		11/26/18 16:00	11/26/18 18:58	
Bromobenzene	ND		100		ug/Kg		11/26/18 16:00	11/26/18 18:58	
N-Propylbenzene	ND		40		ug/Kg		11/26/18 16:00	11/26/18 18:58	
1,2,3-Trichloropropane	ND		40		ug/Kg			11/26/18 18:58	
2-Chlorotoluene	ND		40		ug/Kg			11/26/18 18:58	
1,3,5-Trimethylbenzene	ND		40		ug/Kg			11/26/18 18:58	
4-Chlorotoluene	ND		40		ug/Kg			11/26/18 18:58	
t-Butylbenzene	ND		40		ug/Kg			11/26/18 18:58	
1,2,4-Trimethylbenzene	ND		40		ug/Kg			11/26/18 18:58	

Client Sample ID: Lab Control Sample

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 580-289674/1-A **Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA Prep Batch: 289674 Analysis Batch: 289687** мв мв

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	ND		40		ug/Kg		11/26/18 16:00	11/26/18 18:58	1
1,3-Dichlorobenzene	ND		60		ug/Kg		11/26/18 16:00	11/26/18 18:58	1
4-Isopropyltoluene	ND		40		ug/Kg		11/26/18 16:00	11/26/18 18:58	1
1,4-Dichlorobenzene	ND		60		ug/Kg		11/26/18 16:00	11/26/18 18:58	1
n-Butylbenzene	ND		150		ug/Kg		11/26/18 16:00	11/26/18 18:58	1
1,2-Dichlorobenzene	ND		40		ug/Kg		11/26/18 16:00	11/26/18 18:58	1
1,2-Dibromo-3-Chloropropane	ND		250		ug/Kg		11/26/18 16:00	11/26/18 18:58	1
1,2,4-Trichlorobenzene	ND		60		ug/Kg		11/26/18 16:00	11/26/18 18:58	1
1,2,3-Trichlorobenzene	ND		150		ug/Kg		11/26/18 16:00	11/26/18 18:58	1
Hexachlorobutadiene	ND		150		ug/Kg		11/26/18 16:00	11/26/18 18:58	1
Naphthalene	ND		100		ug/Kg		11/26/18 16:00	11/26/18 18:58	1
Methyl tert-butyl ether	ND		40		ug/Kg		11/26/18 16:00	11/26/18 18:58	1
I and the second									

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Toluene-d8 (Surr) 106 80 - 120 11/26/18 16:00 11/26/18 18:58 4-Bromofluorobenzene (Surr) 100 80 - 120 11/26/18 16:00 11/26/18 18:58 Dibromofluoromethane (Surr) 98 80 - 120 11/26/18 16:00 11/26/18 18:58 Trifluorotoluene (Surr) 102 80 - 120 11/26/18 16:00 11/26/18 18:58 1,2-Dichloroethane-d4 (Surr) 100 80 - 121 11/26/18 16:00 11/26/18 18:58

Lab Sample ID: LCS 580-289674/2-A

Matrix: Solid Analysis Batch: 289687							Prep Type: Total/NA Prep Batch: 289674
	Spike		LCS				%Rec.
Analyte	Added		Qualifier	Unit	_ D	%Rec	Limits
Dichlorodifluoromethane	800	1500	*	ug/Kg		187	26 - 145
Chloromethane	800	1010		ug/Kg		126	53 ₋ 145
Vinyl chloride	800	730		ug/Kg		91	52 - 150
Bromomethane	800	908		ug/Kg		114	66 - 133
Chloroethane	800	984		ug/Kg		123	67 - 139
Trichlorofluoromethane	800	979		ug/Kg		122	73 - 143
1,1-Dichloroethene	800	963		ug/Kg		120	68 - 137
Methylene Chloride	800	844		ug/Kg		106	66 - 141
trans-1,2-Dichloroethene	800	832		ug/Kg		104	71 - 135
1,1-Dichloroethane	800	816		ug/Kg		102	70 - 141
2,2-Dichloropropane	800	998		ug/Kg		125	62 - 150
cis-1,2-Dichloroethene	800	836		ug/Kg		104	74 - 129
Bromochloromethane	800	794		ug/Kg		99	76 - 131
Chloroform	800	801		ug/Kg		100	74 - 133
1,1,1-Trichloroethane	800	989		ug/Kg		124	69 - 144
Carbon tetrachloride	800	991		ug/Kg		124	66 - 150
1,1-Dichloropropene	800	894		ug/Kg		112	76 ₋ 141
Benzene	800	826		ug/Kg		103	79 - 135
1,2-Dichloroethane	800	821		ug/Kg		103	68 - 132
Trichloroethene	800	857		ug/Kg		107	69 - 144
1,2-Dichloropropane	800	790		ug/Kg		99	75 - 136
Dibromomethane	800	754		ug/Kg		94	72 - 130
Bromodichloromethane	800	799		ug/Kg		100	73 - 132

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Lab Sample ID: LCS 580-289674/2-A

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Client Sample ID: Lab Control Sample

h:	289674	

Matrix: Solid Analysis Batch: 289687							Prep Type: Total/NA Prep Batch: 289674
_	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
cis-1 3-Dichloropropene	 800	875		ua/Ka		100	80 122

cis-1,2-Dichloropropene 800 875 ug/Kg 109 80.122 Toluene 800 878 ug/Kg 110 80.125 trans-1,3-Dichloropropene 800 823 ug/Kg 110 80.121 1,1,2-Trichloroethane 800 882 ug/Kg 110 80.123 17-Trichloroethane 800 886 ug/Kg 103 80.120 Dibromochloromethane 800 836 ug/Kg 105 75.125 1,2-Dibromochlane 800 836 ug/Kg 105 75.125 1,2-Dibromochlane 800 838 ug/Kg 105 77.123 Chlorobenzene 800 838 ug/Kg 105 80.122 Ly-Dibromochlane 800 838 ug/Kg 105 80.128 Chlorobenzene 800 838 ug/Kg 105 80.128 Chlorobenzene 800 837 ug/Kg 105 79.128 1,1,2,2-Tetrachloroethane 800	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
trans-1,3-Dichloropropene 800 823 ug/Kg 103 80 - 121 1,1,2-Trichloroethane 800 862 ug/Kg 110 80 - 123 Tetrachloroethene 800 965 ug/Kg 121 71 - 136 1,3-Dichloropropane 800 826 ug/Kg 105 75 - 125 1,2-Dibromochloromethane 800 836 ug/Kg 105 75 - 125 1,12-Dibromoethane 800 841 ug/Kg 105 75 - 123 Chlorobenzene 800 838 ug/Kg 105 80 - 123 Ethybenzene 800 837 ug/Kg 105 79 - 128 1,1,2,2-Tetrachloroethane 800 837 ug/Kg 105 79 - 128 1,1,2,2-Tetrachloroethane 800 837 ug/Kg 105 79 - 128 1,1,2,2-Tetrachloroethane 800 833 ug/Kg 107 80 - 123 1,1,2,2-Tetrachloroethane 800 838 ug/Kg 117 80 - 128	cis-1,3-Dichloropropene	800	875		ug/Kg		109	80 - 122	
1,1,2-Trichloroethane 800 882 ug/kg 110 80 - 123 Tetrachloroethene 800 965 ug/kg 103 76 - 126 Ja-Dichloropropane 800 826 ug/kg 105 75 - 125 1,2-Dibromoethane 800 836 ug/kg 105 75 - 125 1,2-Dibromoethane 800 831 ug/kg 105 77 - 123 Chlorobenzene 800 831 ug/kg 105 80 - 123 Ethylbenzene 800 911 ug/kg 114 80 - 123 Ethylbenzene 800 911 ug/kg 114 80 - 123 Ethylbenzene 800 837 ug/kg 105 79 - 128 1,1,2,2-Tetrachloroethane 800 724 ug/kg 90 74 + 120 m/ykene & p-Xylene 800 933 ug/kg 115 80 + 128 o-Xylene 800 933 ug/kg 111 80 + 128 Styrene 800	Toluene	800	878		ug/Kg		110	80 - 125	
Tetrachloroethene 800 965 ug/kg 121 71.136 1,3-Dichloropropane 800 826 ug/kg 103 80.120 Dibromochloromethane 800 836 ug/kg 105 75.125 1,2-Dibromochloromethane 800 836 ug/kg 105 75.125 1,2-Dibromochlane 800 838 ug/kg 105 77.123 Chlorobenzene 800 838 ug/kg 105 80.123 Elhylbenzene 800 911 ug/kg 114 80.127 1,1,1,2-Tetrachloroethane 800 837 ug/kg 105 79.128 1,1,1,2-Tetrachloroethane 800 837 ug/kg 105 79.128 1,1,1,2-Tetrachloroethane 800 724 ug/kg 90 74.120 m-Xylene 8 p-Xylene 800 933 ug/kg 117 80.128 o-Xylene 800 884 ug/kg 111 80.125 Styrene 800 884 ug/kg 111 80.125 Styrene 800 916 ug/kg 115 79.129 Bromoform 800 897 ug/kg 116 80.128 Bromobenzene 800 930 ug/kg 116 80.128 Bromobenzene 800 930 ug/kg 116 80.128 Bromobenzene 800 964 ug/kg 121 78.126 N-Propylbenzene 800 869 ug/kg 114 74.127 1,3,5-Trimethylbenzene 800 896 ug/kg 107 70.127 2-Chlorotoluene 800 896 ug/kg 110 77.127 1,3,5-Trimethylbenzene 800 896 ug/kg 110 79.127 1,3,5-Trimethylbenzene 800 896 ug/kg 110 79.127 1,3,6-Trimethylbenzene 800 896 ug/kg 110 79.127 1,3,1-Trimethylbenzene 800 896 ug/kg 110 79.127 1,3,1-Trimethylbenzene 800 896 ug/kg 110 79.127 1,3,1-Trimethylbenzene 800 896 ug/kg 110 79.127 1,2,1-Trimethylbenzene 800 897 ug/kg 110 79.127 1,2,1-Trimethylbenzene 800 898 ug/kg 110 79.127 1,2,1-Trimethylbenzene 800 891 ug/kg 110 79.127 1,2,1-Trimethylbenzene 800 892 ug/kg 110 79.127 1,2,1-Trimethylbenzene 800 891 ug/kg 110 79.127 1,2,1-Trimethylbenzene 800 892 ug/kg 110 79.127 1,2,1-Trimethylbenzene 800 891 ug/kg 110 79.127 1,2,1-Trimethylbenzene 800 892 ug/kg 110 79.127 1,2,1-Trimethylbenzene 800 891 ug/kg 110 79.127 1,2,1-Trimethylbenzene 800 892 ug/kg 110 79.127 1,2,1-Trimethylbenzene 800 892 ug/kg 110 79.127 1,2,1-Trimethylbenzene 800 894 ug/kg 100 79.123 1,2-Dibromos-Dibropropane 800 706 ug/kg 88 53.135 1,2,1-Trichlorobenzene 800 872 ug/kg 109 65.136 1,2,1-Trichlorobenzene 800 872 ug/kg 109 67 67.124	trans-1,3-Dichloropropene	800	823		ug/Kg		103	80 - 121	
1,3-Dichloropropane 800 826 ug/Kg 103 80 - 120 Dibromochloromethane 800 836 ug/Kg 105 75 - 125 1,2-Dibromochlane 800 841 ug/Kg 105 77 - 123 Chlorobenzene 800 838 ug/Kg 105 80 - 123 Ethylbenzene 800 911 ug/Kg 114 80 - 127 1,1,1,2-Tetrachloroethane 800 837 ug/Kg 105 79 - 128 1,1,2,2-Tetrachloroethane 800 833 ug/Kg 90 74 - 120 m-Xylene & p-Xylene 800 933 ug/Kg 117 80 - 128 o-Xylene 800 933 ug/Kg 111 80 - 125 Styrene 800 916 ug/Kg 115 79 - 129 Bromoform 800 897 ug/Kg 112 65 - 134 Isopropylenzene 800 930 ug/Kg 112 78 - 126 Bromoform 800 <td< td=""><td>1,1,2-Trichloroethane</td><td>800</td><td>882</td><td></td><td>ug/Kg</td><td></td><td>110</td><td>80 - 123</td><td></td></td<>	1,1,2-Trichloroethane	800	882		ug/Kg		110	80 - 123	
Dibromochloromethane 800 836 ug/Kg 105 75.125 1,2-Dibromoethane 800 841 ug/Kg 105 77.123 Chlorobenzene 800 838 ug/Kg 105 80.123 Ethylbenzene 800 838 ug/Kg 114 80.127 1,1,12-Tetrachloroethane 800 837 ug/Kg 105 79.128 1,1,2,2-Tetrachloroethane 800 837 ug/Kg 105 79.128 1,1,2,2-Tetrachloroethane 800 837 ug/Kg 105 79.128 1,1,2,2-Tetrachloroethane 800 933 ug/Kg 117 80.128 0,2/Jene 800 884 ug/Kg 111 80.128 Styrene 800 884 ug/Kg 115 79.129 Bromoform 800 897 ug/Kg 112 86.134 Isopropylenzene 800 930 ug/Kg 112 78.126 N-Propylibenzene 800 91	Tetrachloroethene	800	965		ug/Kg		121	71 - 136	
1,2-Dibromoethane 800 841 ug/Kg 105 77-123 Chlorobenzene 800 838 ug/Kg 105 80-123 Ethylbenzene 800 911 ug/Kg 114 80-127 1,1,1,2-Tetrachloroethane 800 837 ug/Kg 90 74-120 n.1,2,2-Tetrachloroethane 800 933 ug/Kg 117 80-128 n.Yylene & P.Xylene 800 933 ug/Kg 117 80-128 o-Xylene 800 933 ug/Kg 117 80-128 Styrene 800 936 ug/Kg 115 79-129 Bromoform 800 897 ug/Kg 112 65-134 Isopropylbenzene 800 930 ug/Kg 116 80-128 Bromobenzene 800 930 ug/Kg 114 74-127 1,2,3-Trichloropropane 800 955 ug/Kg 107 70-127 2,C-hlorotoluene 800 896 ug/Kg 112 72-128 4,C-hlorotoluene 800 896	1,3-Dichloropropane	800	826		ug/Kg		103	80 - 120	
Chlorobenzene 800 838 ug/Kg 105 80-123 Ethylbenzene 800 911 ug/Kg 114 80-127 1,1,1,2-Tetrachloroethane 800 837 ug/Kg 105 79-128 1,1,2,2-Tetrachloroethane 800 837 ug/Kg 90 74-120 m-Xylene & p-Xylene 800 933 ug/Kg 117 80-128 o-Xylene 800 884 ug/Kg 111 80-128 Bromoform 800 916 ug/Kg 115 79-129 Bromoform 800 930 ug/Kg 115 79-129 Bromobenzene 800 930 ug/Kg 116 80-128 Bromobenzene 800 930 ug/Kg 111 79-129 Bromobenzene 800 930 ug/Kg 111 74-127 Ispyrlybenzene 800 964 ug/Kg 121 78-126 N-Propylbenzene 800 855 ug/Kg	Dibromochloromethane	800	836		ug/Kg		105	75 - 125	
Ethylbenzene 800 911 ug/Kg 114 80-127 1,1,1,2-Tetrachloroethane 800 837 ug/Kg 105 79-128 1,1,2,2-Tetrachloroethane 800 724 ug/Kg 90 74-120 m-Xylene 800 933 ug/Kg 117 80-128 o-Xylene 800 884 ug/Kg 111 80-125 Styrene 800 916 ug/Kg 115 79-129 Bromoform 800 937 ug/Kg 116 65-134 Isopropylbenzene 800 930 ug/Kg 116 80-128 Bromobenzene 800 930 ug/Kg 116 80-128 Bromobenzene 800 964 ug/Kg 111 74-127 L2,3-Trichloropropane 800 964 ug/Kg 114 74-127 2-Chlorotoluene 800 869 ug/Kg 107 77-127 2-Chlorotoluene 800 896 ug/Kg	1,2-Dibromoethane	800	841		ug/Kg		105	77 - 123	
1,1,1,2-Tetrachloroethane 800 837 ug/Kg 105 79-128 1,1,2,2-Tetrachloroethane 800 724 ug/Kg 90 74-120 m-Xylene & p-Xylene 800 933 ug/Kg 117 80-128 o-Xylene 800 844 ug/Kg 111 80-125 Styrene 800 916 ug/Kg 115 79-129 Bromoform 800 897 ug/Kg 112 65-134 Isopropylbenzene 800 930 ug/Kg 116 80-128 Bromobenzene 800 930 ug/Kg 116 80-128 Bromobenzene 800 930 ug/Kg 116 80-128 N-Propylbenzene 800 964 ug/Kg 114 74-127 1,2,3-Trichloropropane 800 855 ug/Kg 107 70-127 2-Chlorotoluene 800 869 ug/Kg 112 72-128 4-Chlorotoluene 800 869 ug/Kg 112 72-128 4-Chlorotoluene 800 836	Chlorobenzene	800	838		ug/Kg		105	80 - 123	
1,1,2,2-Tetrachloroethane 800 724 ug/Kg 90 74 - 120 m-Xylene & p-Xylene 800 933 ug/Kg 117 80 - 128 o-Xylene 800 884 ug/Kg 111 80 - 125 Styrene 800 916 ug/Kg 115 79 - 129 Bromoform 800 897 ug/Kg 112 65 - 134 Isopropylbenzene 800 930 ug/Kg 116 80 - 128 Bromobenzene 800 964 ug/Kg 121 78 - 126 N-Propylbenzene 800 964 ug/Kg 114 74 - 127 1,2,3-Trichloropropane 800 855 ug/Kg 107 70 - 127 2-Chlorotoluene 800 869 ug/Kg 109 77 - 127 1,3,5-Trimethylbenzene 800 896 ug/Kg 104 78 - 126 1-Butylbenzene 800 836 ug/Kg 104 78 - 126 1-Butylbenzene 800 891 ug/Kg 110 73 - 127 sec-Butylbenzene 800 </td <td>Ethylbenzene</td> <td>800</td> <td>911</td> <td></td> <td>ug/Kg</td> <td></td> <td>114</td> <td>80 - 127</td> <td></td>	Ethylbenzene	800	911		ug/Kg		114	80 - 127	
m-Xylene & p-Xylene 800 933 ug/Kg 117 80 - 128 o-Xylene 800 884 ug/Kg 111 80 - 125 Styrene 800 916 ug/Kg 115 79 - 129 Bromoform 800 897 ug/Kg 112 65 - 134 Isopropylbenzene 800 930 ug/Kg 116 80 - 128 Bromobenzene 800 964 ug/Kg 121 78 - 126 N-Propylbenzene 800 911 ug/Kg 114 74 - 127 1,2,3-Trichloropropane 800 855 ug/Kg 107 70 - 127 2-Chlorotoluene 800 856 ug/Kg 109 77 - 127 1,3,5-Trimethylbenzene 800 896 ug/Kg 104 78 - 126 4-Chlorotoluene 800 836 ug/Kg 112 72 - 128 4-Chlorotoluene 800 836 ug/Kg 104 78 - 126 1,2,4-Trimethylbenzene 800 <td< td=""><td>1,1,1,2-Tetrachloroethane</td><td>800</td><td>837</td><td></td><td>ug/Kg</td><td></td><td>105</td><td>79 - 128</td><td></td></td<>	1,1,1,2-Tetrachloroethane	800	837		ug/Kg		105	79 - 128	
o-Xylene 800 884 ug/Kg 111 80 - 125 Styrene 800 916 ug/Kg 115 79 - 129 Bromoform 800 897 ug/Kg 112 65 - 134 Isopropylbenzene 800 930 ug/Kg 116 80 - 128 Bromobenzene 800 964 ug/Kg 121 78 - 126 N-Propylbenzene 800 911 ug/Kg 114 74 - 127 1,2,3-Trichloropropane 800 855 ug/Kg 107 70 - 127 2-Chlorotoluene 800 869 ug/Kg 119 77 - 127 1,3,5-Trimethylbenzene 800 896 ug/Kg 109 77 - 127 1,3,5-Trimethylbenzene 800 896 ug/Kg 110 78 - 126 4-Chlorotoluene 800 896 ug/Kg 110 73 - 127 1,2,4-Trimethylbenzene 800 901 ug/Kg 110 73 - 127 1,2,4-Trimethylbenzene 800	1,1,2,2-Tetrachloroethane	800	724		ug/Kg		90	74 - 120	
Styrene 800 916 ug/Kg 115 79 - 129 Bromoform 800 897 ug/Kg 112 65 - 134 Isopropylbenzene 800 930 ug/Kg 116 80 - 128 Bromobenzene 800 964 ug/Kg 121 78 - 126 N-Propylbenzene 800 961 ug/Kg 114 74 - 127 1,2,3-Trichloropropane 800 855 ug/Kg 107 70 - 127 2-Chlorotoluene 800 869 ug/Kg 109 77 - 127 1,3,5-Trimethylbenzene 800 896 ug/Kg 104 78 - 122 4-Chlorotoluene 800 896 ug/Kg 104 78 - 122 4-Ebutylbenzene 800 896 ug/Kg 113 79 - 127 1,2,4-Trimethylbenzene 800 881 ug/Kg 110 73 - 127 sec-Butylbenzene 800 892 ug/Kg 110 73 - 129 1,3-Dichlorobenzene 800	m-Xylene & p-Xylene	800	933		ug/Kg		117	80 - 128	
Bromoform 800 897 ug/kg 112 65 - 134 Isopropylbenzene 800 930 ug/kg 116 80 - 128 Bromobenzene 800 964 ug/kg 121 78 - 126 N-Propylbenzene 800 911 ug/kg 114 74 - 127 1,2,3-Trichloropropane 800 855 ug/kg 107 70 - 127 2-Chlorotoluene 800 869 ug/kg 109 77 - 127 1,3,5-Trimethylbenzene 800 896 ug/kg 112 72 - 128 4-Chlorotoluene 800 836 ug/kg 104 78 - 126 1-Butylbenzene 800 836 ug/kg 110 73 - 127 sec-Butylbenzene 800 881 ug/kg 110 73 - 127 sec-Butylbenzene 800 841 ug/kg 112 77 - 129 1,3-Dichlorobenzene 800 841 ug/kg 105 78 - 122 4-Isopropyltoluene 800	o-Xylene	800	884		ug/Kg		111	80 - 125	
Isopropylbenzene	Styrene	800	916		ug/Kg		115	79 - 129	
Bromobenzene 800 964 ug/Kg 121 78 - 126 N-Propylbenzene 800 911 ug/Kg 114 74 - 127 1,2,3-Trichloropropane 800 855 ug/Kg 107 70 - 127 2-Chlorotoluene 800 869 ug/Kg 109 77 - 127 1,3,5-Trimethylbenzene 800 896 ug/Kg 112 72 - 128 4-Chlorotoluene 800 836 ug/Kg 104 78 - 126 4-Butylbenzene 800 836 ug/Kg 113 79 - 127 1,2,4-Trimethylbenzene 800 881 ug/Kg 110 73 - 127 sec-Butylbenzene 800 881 ug/Kg 110 73 - 127 1,3-Dichlorobenzene 800 841 ug/Kg 105 78 - 122 4-Isopropyltoluene 800 841 ug/Kg 105 78 - 122 4-Isopropyltoluene 800 840 ug/Kg 105 71 - 129 1,4-Dichlorobenzene 800 848 ug/Kg 106 77 - 130 1,2-Dic	Bromoform	800	897		ug/Kg		112	65 - 134	
N-Propylbenzene 800 911 ug/Kg 114 74 - 127 1,2,3-Trichloropropane 800 855 ug/Kg 107 70 - 127 2-Chlorotoluene 800 869 ug/Kg 109 77 - 127 1,3,5-Trimethylbenzene 800 896 ug/Kg 112 72 - 128 4-Chlorotoluene 800 836 ug/Kg 112 72 - 128 4-Chlorotoluene 800 836 ug/Kg 114 78 - 126 t-Butylbenzene 800 901 ug/Kg 113 79 - 127 1,2,4-Trimethylbenzene 800 881 ug/Kg 110 73 - 127 1,2,4-Trimethylbenzene 800 881 ug/Kg 110 73 - 127 sec-Butylbenzene 800 892 ug/Kg 112 77 - 129 1,3-Dichlorobenzene 800 841 ug/Kg 105 78 - 122 4-Isopropyltoluene 800 841 ug/Kg 105 77 - 129 1,4-Dichlorobenzene 800 840 ug/Kg 105 71 - 129 1,4-Dichlorobenzene 800 848 ug/Kg 106 77 - 130 1,2-Dichlorobenzene 800 831 ug/Kg 106 77 - 130 1,2-Dichlorobenzene 800 831 ug/Kg 95 68 - 131 1,2,3-Trichlorobenzene 800 706 ug/Kg 95 68 - 131 1,2,3-Trichlorobenzene 800 872 ug/Kg 109 65 - 136 Naphthalene 800 536 ug/Kg 67 67 - 124	Isopropylbenzene	800	930		ug/Kg		116	80 - 128	
1,2,3-Trichloropropane 800 855 ug/Kg 107 70 - 127 2-Chlorotoluene 800 869 ug/Kg 109 77 - 127 1,3,5-Trimethylbenzene 800 896 ug/Kg 112 72 - 128 4-Chlorotoluene 800 836 ug/Kg 104 78 - 126 t-Butylbenzene 800 901 ug/Kg 113 79 - 127 1,2,4-Trimethylbenzene 800 881 ug/Kg 110 73 - 127 sec-Butylbenzene 800 892 ug/Kg 112 77 - 129 1,3-Dichlorobenzene 800 841 ug/Kg 105 78 - 122 4-Isopropyltoluene 800 841 ug/Kg 105 77 - 129 1,4-Dichlorobenzene 800 840 ug/Kg 105 77 - 123 n-Butylbenzene 800 848 ug/Kg 106 77 - 130 1,2-Dichlorobenzene 800 831 ug/Kg 106 77 - 130 1,2-Dibromo-3-Chloropropane 800 706 ug/Kg 88 53 - 135	Bromobenzene	800	964		ug/Kg		121	78 - 126	
2-Chlorotoluene 800 869 ug/Kg 109 77 - 127 1,3,5-Trimethylbenzene 800 896 ug/Kg 112 72 - 128 4-Chlorotoluene 800 836 ug/Kg 104 78 - 126 t-Butylbenzene 800 901 ug/Kg 113 79 - 127 1,2,4-Trimethylbenzene 800 881 ug/Kg 110 73 - 127 sec-Butylbenzene 800 892 ug/Kg 112 77 - 129 1,3-Dichlorobenzene 800 841 ug/Kg 105 78 - 122 4-Isopropyltoluene 800 840 ug/Kg 105 78 - 122 4-Isopropyltoluene 800 840 ug/Kg 105 71 - 129 1,4-Dichlorobenzene 800 817 ug/Kg 102 77 - 123 n-Butylbenzene 800 848 ug/Kg 106 77 - 130 1,2-Dichlorobenzene 800 831 ug/Kg 104 78 - 120 1,2-Dibromo-3-Chloropropane 800 761 ug/Kg 85 3 - 135 <t< td=""><td>N-Propylbenzene</td><td>800</td><td>911</td><td></td><td>ug/Kg</td><td></td><td>114</td><td>74 - 127</td><td></td></t<>	N-Propylbenzene	800	911		ug/Kg		114	74 - 127	
1,3,5-Trimethylbenzene 800 896 ug/Kg 112 72 - 128 4-Chlorotoluene 800 836 ug/Kg 104 78 - 126 t-Butylbenzene 800 901 ug/Kg 113 79 - 127 1,2,4-Trimethylbenzene 800 881 ug/Kg 110 73 - 127 sec-Butylbenzene 800 892 ug/Kg 112 77 - 129 1,3-Dichlorobenzene 800 841 ug/Kg 105 78 - 122 4-Isopropyltoluene 800 840 ug/Kg 105 71 - 129 1,4-Dichlorobenzene 800 817 ug/Kg 102 77 - 123 n-Butylbenzene 800 848 ug/Kg 106 77 - 130 1,2-Dichlorobenzene 800 831 ug/Kg 104 78 - 120 1,2-Dibromo-3-Chloropropane 800 761 ug/Kg 95 68 - 131 1,2,4-Trichlorobenzene 800 549 ug/Kg 69 71 - 129 Hexachlorobutadiene 800 872 ug/Kg 109 65 - 136	1,2,3-Trichloropropane	800	855		ug/Kg		107	70 - 127	
4-Chlorotoluene 800 836 ug/Kg 104 78 - 126 t-Butylbenzene 800 901 ug/Kg 113 79 - 127 1,2,4-Trimethylbenzene 800 881 ug/Kg 110 73 - 127 sec-Butylbenzene 800 892 ug/Kg 112 77 - 129 1,3-Dichlorobenzene 800 841 ug/Kg 105 78 - 122 4-Isopropyltoluene 800 840 ug/Kg 105 71 - 129 1,4-Dichlorobenzene 800 817 ug/Kg 102 77 - 123 n-Butylbenzene 800 848 ug/Kg 106 77 - 130 1,2-Dichlorobenzene 800 831 ug/Kg 104 78 - 120 1,2-Dibromo-3-Chloropropane 800 706 ug/Kg 88 53 - 135 1,2,4-Trichlorobenzene 800 761 ug/Kg 95 68 - 131 1,2,3-Trichlorobenzene 800 549 ug/Kg 69 71 - 129 Hexachlorobutadiene 800 872 ug/Kg 109 65 - 136	2-Chlorotoluene	800	869		ug/Kg		109	77 - 127	
t-Butylbenzene 800 901 ug/Kg 113 79 - 127 1,2,4-Trimethylbenzene 800 881 ug/Kg 110 73 - 127 sec-Butylbenzene 800 892 ug/Kg 112 77 - 129 1,3-Dichlorobenzene 800 841 ug/Kg 105 78 - 122 4-Isopropyltoluene 800 840 ug/Kg 105 71 - 129 1,4-Dichlorobenzene 800 817 ug/Kg 102 77 - 123 n-Butylbenzene 800 848 ug/Kg 106 77 - 130 1,2-Dichlorobenzene 800 831 ug/Kg 104 78 - 120 1,2-Dibromo-3-Chloropropane 800 706 ug/Kg 88 53 - 135 1,2,4-Trichlorobenzene 800 549 ug/Kg 95 68 - 131 1,2,3-Trichlorobenzene 800 872 ug/Kg 109 65 - 136 Naphthalene 800 536 ug/Kg 67 67 - 124	1,3,5-Trimethylbenzene	800	896		ug/Kg		112	72 - 128	
1,2,4-Trimethylbenzene 800 881 ug/Kg 110 73 - 127 sec-Butylbenzene 800 892 ug/Kg 112 77 - 129 1,3-Dichlorobenzene 800 841 ug/Kg 105 78 - 122 4-Isopropyltoluene 800 840 ug/Kg 105 71 - 129 1,4-Dichlorobenzene 800 817 ug/Kg 102 77 - 123 n-Butylbenzene 800 848 ug/Kg 106 77 - 130 1,2-Dichlorobenzene 800 831 ug/Kg 104 78 - 120 1,2-Dibromo-3-Chloropropane 800 706 ug/Kg 88 53 - 135 1,2,4-Trichlorobenzene 800 761 ug/Kg 95 68 - 131 1,2,3-Trichlorobenzene 800 549 ug/Kg 69 71 - 129 Hexachlorobutadiene 800 872 ug/Kg 109 65 - 136 Naphthalene 800 536 ug/Kg 67 67 - 124	4-Chlorotoluene	800	836		ug/Kg		104	78 - 126	
sec-Butylbenzene 800 892 ug/Kg 112 77 - 129 1,3-Dichlorobenzene 800 841 ug/Kg 105 78 - 122 4-Isopropyltoluene 800 840 ug/Kg 105 71 - 129 1,4-Dichlorobenzene 800 817 ug/Kg 102 77 - 123 n-Butylbenzene 800 848 ug/Kg 106 77 - 130 1,2-Dichlorobenzene 800 831 ug/Kg 104 78 - 120 1,2-Dibromo-3-Chloropropane 800 706 ug/Kg 88 53 - 135 1,2,4-Trichlorobenzene 800 761 ug/Kg 95 68 - 131 1,2,3-Trichlorobenzene 800 549 * ug/Kg 69 71 - 129 Hexachlorobutadiene 800 872 ug/Kg 109 65 - 136 Naphthalene 800 536 ug/Kg 67 67 - 124	t-Butylbenzene	800	901		ug/Kg		113	79 - 127	
1,3-Dichlorobenzene 800 841 ug/Kg 105 78 - 122 4-Isopropyltoluene 800 840 ug/Kg 105 71 - 129 1,4-Dichlorobenzene 800 817 ug/Kg 102 77 - 123 n-Butylbenzene 800 848 ug/Kg 106 77 - 130 1,2-Dichlorobenzene 800 831 ug/Kg 104 78 - 120 1,2-Dibromo-3-Chloropropane 800 706 ug/Kg 88 53 - 135 1,2,4-Trichlorobenzene 800 761 ug/Kg 95 68 - 131 1,2,3-Trichlorobenzene 800 549 * ug/Kg 69 71 - 129 Hexachlorobutadiene 800 872 ug/Kg 109 65 - 136 Naphthalene 800 536 ug/Kg 67 67 - 124	1,2,4-Trimethylbenzene	800	881		ug/Kg		110	73 - 127	
4-Isopropyltoluene 800 840 ug/Kg 105 71 - 129 1,4-Dichlorobenzene 800 817 ug/Kg 102 77 - 123 n-Butylbenzene 800 848 ug/Kg 106 77 - 130 1,2-Dichlorobenzene 800 831 ug/Kg 104 78 - 120 1,2-Dibromo-3-Chloropropane 800 706 ug/Kg 88 53 - 135 1,2,4-Trichlorobenzene 800 761 ug/Kg 95 68 - 131 1,2,3-Trichlorobenzene 800 549 * ug/Kg 69 71 - 129 Hexachlorobutadiene 800 872 ug/Kg 109 65 - 136 Naphthalene 800 536 ug/Kg 67 67 - 124	sec-Butylbenzene	800	892		ug/Kg		112	77 - 129	
1,4-Dichlorobenzene 800 817 ug/Kg 102 77 - 123 n-Butylbenzene 800 848 ug/Kg 106 77 - 130 1,2-Dichlorobenzene 800 831 ug/Kg 104 78 - 120 1,2-Dibromo-3-Chloropropane 800 706 ug/Kg 88 53 - 135 1,2,4-Trichlorobenzene 800 761 ug/Kg 95 68 - 131 1,2,3-Trichlorobenzene 800 549 * ug/Kg 69 71 - 129 Hexachlorobutadiene 800 872 ug/Kg 109 65 - 136 Naphthalene 800 536 ug/Kg 67 67 - 124	1,3-Dichlorobenzene	800	841		ug/Kg		105	78 - 122	
n-Butylbenzene 800 848 ug/Kg 106 77 - 130 1,2-Dichlorobenzene 800 831 ug/Kg 104 78 - 120 1,2-Dibromo-3-Chloropropane 800 706 ug/Kg 88 53 - 135 1,2,4-Trichlorobenzene 800 761 ug/Kg 95 68 - 131 1,2,3-Trichlorobenzene 800 549 * ug/Kg 69 71 - 129 Hexachlorobutadiene 800 872 ug/Kg 109 65 - 136 Naphthalene 800 536 ug/Kg 67 67 - 124	4-Isopropyltoluene	800	840		ug/Kg		105	71 - 129	
1,2-Dichlorobenzene 800 831 ug/Kg 104 78 - 120 1,2-Dibromo-3-Chloropropane 800 706 ug/Kg 88 53 - 135 1,2,4-Trichlorobenzene 800 761 ug/Kg 95 68 - 131 1,2,3-Trichlorobenzene 800 549 * ug/Kg 69 71 - 129 Hexachlorobutadiene 800 872 ug/Kg 109 65 - 136 Naphthalene 800 536 ug/Kg 67 67 - 124	1,4-Dichlorobenzene	800	817		ug/Kg		102	77 - 123	
1,2-Dibromo-3-Chloropropane 800 706 ug/Kg 88 53 - 135 1,2,4-Trichlorobenzene 800 761 ug/Kg 95 68 - 131 1,2,3-Trichlorobenzene 800 549 * ug/Kg 69 71 - 129 Hexachlorobutadiene 800 872 ug/Kg 109 65 - 136 Naphthalene 800 536 ug/Kg 67 67 - 124	n-Butylbenzene	800	848		ug/Kg		106	77 - 130	
1,2,4-Trichlorobenzene 800 761 ug/Kg 95 68 - 131 1,2,3-Trichlorobenzene 800 549 * ug/Kg 69 71 - 129 Hexachlorobutadiene 800 872 ug/Kg 109 65 - 136 Naphthalene 800 536 ug/Kg 67 67 - 124	1,2-Dichlorobenzene	800	831		ug/Kg		104		
1,2,3-Trichlorobenzene 800 549 * ug/Kg 69 71 - 129 Hexachlorobutadiene 800 872 ug/Kg 109 65 - 136 Naphthalene 800 536 ug/Kg 67 67 - 124	1,2-Dibromo-3-Chloropropane	800	706		ug/Kg		88	53 - 135	
Hexachlorobutadiene 800 872 ug/Kg 109 65 - 136 Naphthalene 800 536 ug/Kg 67 67 - 124	1,2,4-Trichlorobenzene	800	761		ug/Kg		95	68 - 131	
Naphthalene 800 536 ug/Kg 67 67 - 124	1,2,3-Trichlorobenzene	800	549	*	ug/Kg		69	71 - 129	
	Hexachlorobutadiene	800	872		ug/Kg		109	65 - 136	
Methyl tert-butyl ether 800 859 ua/Ka 107 75 ₌ 126	Naphthalene	800	536		ug/Kg		67	67 - 124	
	Methyl tert-butyl ether	800	859		ug/Kg		107	75 - 126	

LCS LCS	
---------	--

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	104		80 - 120
4-Bromofluorobenzene (Surr)	101		80 - 120
Dibromofluoromethane (Surr)	98		80 - 120
Trifluorotoluene (Surr)	100		80 - 120
1,2-Dichloroethane-d4 (Surr)	98		80 - 121

QC Sample Results

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Lab Sample ID: LCSD 580-289674/3-A

TestAmerica Job ID: 580-82025-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Client Sample ID: Lab Control Sample Dup

Spike LCSD LCSD %Rec. F	Matrix: Solid Analysis Batch: 289687							Prep Ty		
Analyste	Allalysis Batch. 209007	Spike	LCSD	LCSD					attii. Z	RPD
Dichlorodifuloromethane 800 1640 ugiKg 205 28-145 9 Chloromethane 800 1020 ugiKg 224 52-150 94 Winyl chloride 800 2030 ugiKg 224 52-150 94 Bromomethane 800 981 ugiKg 123 66-133 8 Chlorotethane 800 1940 ugiKg 155 77-138 7 Trichlorothoromethane 800 1040 ugiKg 155 73-143 23 Methylene Chloride 800 867 ugiKg 108 66-141 3 Intractionide 800 850 ugiKg 108 66-141 3 Intractionide 800 850 ugiKg 104 62-150 18 Economic Chloride 800 834 ugiKg 104 62-150 18 2-2-Dichloropropane 800 834 ugiKg 104 42-129 Eliconochima	Analyte	-	_		Unit	D	%Rec		RPD	Limit
Vnyl chloride 800 2030 ug/kg 254 52-150 94 Bromomethane 800 981 ug/kg 123 66-133 8 Chloriochtane 800 1050 ug/kg 132 67-139 7 Thichiorofluoromethane 800 1040 ug/kg 155 73-143 23 Methylene Chloride 800 867 ug/kg 108 86-141 3 Atars-1-2-Dichlorosthene 800 887 ug/kg 108 66-141 3 1-1-Dichlorosthene 800 850 ug/kg 104 42-150 18 1-1-Dichlorosthene 800 834 ug/kg 104 42-150 18 1-1-Dichlorosthane 800 878 ug/kg 104 74-135 5 Bromochloromethane 800 817 ug/kg 102 76-131 3 1-1-Dichlorogropene 800 801 101 ug/kg 127 69-144 2 <td></td> <td>800</td> <td>1640</td> <td>*</td> <td>ug/Kg</td> <td></td> <td>205</td> <td>26 - 145</td> <td>9</td> <td>23</td>		800	1640	*	ug/Kg		205	26 - 145	9	23
Bromomethane 800 981 ug/kg 123 66 - 133 8 Chioroethane 800 1050 ug/kg 132 66 - 133 8 Tichlorothomethane 800 1240 ug/kg 130 65 - 173 8 All Hollorothane 800 867 ug/kg 130 66 - 137 8 Methylene Chioride 800 867 ug/kg 109 71 - 135 5 La Chioride 800 871 ug/kg 109 71 - 135 5 La Chioride 800 878 ug/kg 100 70 - 141 4 2,2 Dichlorogehane 800 878 ug/kg 110 74 - 129 5 Gia-13-2 Dichlorogehane 800 878 ug/kg 110 74 - 129 5 Garboritarachioride 800 878 ug/kg 101 74 - 133 3 Chioricorpopane 800 999 ug/kg 116 76 - 141 4	Chloromethane	800	1020		ug/Kg		127	53 - 145	1	18
Chloresthane 800 1050 ug/kg 132 67-139 77 77 71 71 71 71 71 7	Vinyl chloride	800	2030	*	ug/Kg		254	52 - 150	94	37
Trichlorofuloromethane 800 1240 ug/Kg 155 73-143 23 1,1-Dichioroethene 800 1040 ug/Kg 130 68-131 8 Methylene Chloride 800 867 ug/Kg 109 66-141 3 trans-1,2-Dichloroethene 800 871 ug/Kg 100 71-135 5 1,1-Dichloroethane 800 834 ug/Kg 100 74-129 5 Elocation Control 800 834 ug/Kg 100 74-129 5 Elocation Christomethane 800 826 ug/Kg 100 74-129 5 Chloroform 800 826 ug/Kg 102 76-131 3 Chloroform 800 826 ug/Kg 100 74-133 3 Chloroform 800 828 ug/Kg 10 76-144 2 Chloroform 800 999 ug/Kg 10 76-144 4 Enzage	Bromomethane	800	981				123	66 - 133	8	22
Tirchlorofunorethane 800 1240 ug/Kg 155 73.143 23 In-Dichloroethene 800 1040 ug/Kg 130 68.137 8 Methylene Chloride 800 871 ug/Kg 109 66.141 3 Irans-12-Dichloroethane 800 871 ug/Kg 100 71.135 5 1Dichloroethane 800 850 ug/Kg 100 74.129 18 22-Dichloroephane 800 878 ug/Kg 110 74.129 18 25-Lichloroethane 800 878 ug/Kg 110 74.129 18 Bromochloromethane 800 878 ug/Kg 100 74.133 3 Chloroform 800 826 ug/Kg 100 74.133 3 Chloroform 800 828 ug/Kg 110 76.141 4 Bromochloroethane 800 998 ug/Kg 105 79.155 1 Li-Dich	Chloroethane	800	1050		ug/Kg		132	67 - 139	7	22
Methylene Chloride 800 867 ug/Kg 108 66.141 3 trans-1,2-Dichloroethene 800 871 ug/Kg 109 71.135 5 1,1-Dichloroethene 800 850 ug/Kg 106 70.141 4 2,2-Dichloroptopane 800 834 ug/Kg 110 74.129 5 Bromochloromethane 800 878 ug/Kg 102 76.131 3 Chloroform 800 826 ug/Kg 102 76.131 3 1,1-Dichloroethane 800 999 ug/Kg 127 66.150 1 1,1-Dichloropropene 800 999 ug/Kg 116 76.141 4 Benzane 800 928 ug/Kg 116 76.141 4 Ly-Dichloroethane 800 930 ug/Kg 113 99.155 1 1,1-Dichloropropane 800 801 ug/Kg 105 79.135 1 1,2-Dichlo	Trichlorofluoromethane	800	1240	*			155	73 - 143	23	17
Methylene Chloride 800 867 ug/Kg 108 66-141 3 1.1-Dichloroethene 800 871 ug/Kg 109 71-135 5 1.1-Dichloroethene 800 850 ug/Kg 106 70-141 4 2.2-Dichloropropane 800 834 ug/Kg 104 62-150 18 cis-12-Dichloroethene 800 878 ug/Kg 104 62-150 18 cis-12-Dichloroethene 800 817 ug/Kg 102 76-131 3 Chloroform 800 826 ug/Kg 103 74-133 3 Chloroform 800 999 ug/Kg 127 66-150 1 1.1-Dichloropropene 800 999 ug/Kg 116 76-141 4 Benzene 800 837 ug/Kg 105 79-135 1 1.2-Dichloropropene 800 844 ug/Kg 105 68-132 3 Tickloroethene<	1,1-Dichloroethene	800	1040				130	68 - 137	8	17
trans-12-Dichloroethene 800 871 ug/Kg 109 71, 135 5 1,1-Dichloroethane 800 850 ug/Kg 104 70, -141 4 2,2-Dichloropropane 800 878 ug/Kg 110 74, 129 5 Bromochloromethane 800 817 ug/Kg 102 76, 131 3 Chloroform 800 826 ug/Kg 103 74, 133 3 Chloroform 800 826 ug/Kg 103 74, 133 3 1,1,1-Trichloroethane 800 909 ug/Kg 127 66, 150 1 1,1-Dichloropropene 800 928 ug/Kg 116 76, 141 4 Benzene 800 928 ug/Kg 115 76, 141 4 Benzene 800 837 ug/Kg 105 76, 131 1 1,2-Dichloroethane 800 844 ug/Kg 105 76, 132 3 Trichloroethane	Methylene Chloride	800	867				108	66 - 141	3	17
1,1-Dichloroerbane 800 850 ug/Kg 106 70 - 141 4 2,2-Dichloropropane 800 834 ug/Kg 110 70 - 129 5 Bromochloromethane 800 817 ug/Kg 110 70 - 129 5 Bromochloromethane 800 817 ug/Kg 102 76 - 131 3 Chloroform 800 826 ug/Kg 137 74 - 133 3 Chlorotheme 800 1010 ug/Kg 127 69 - 144 2 Carbon tetrachloride 800 999 ug/Kg 125 66 - 150 1 1,1-Dichloropropene 800 837 ug/Kg 115 76 - 141 4 Benzene 800 837 ug/Kg 105 68 - 132 3 Tichloroethane 800 844 ug/Kg 105 68 - 132 3 1,2-Dichloropropane 800 796 ug/Kg 99 75 - 136 1 1,2-Dichloropropane 800 894 ug/Kg 10 73 - 132 1 <	trans-1,2-Dichloroethene	800	871				109	71 - 135	5	16
2,2-Dichloropropane 800 834 ug/Kg 104 62 - 150 18 cis-1,2-Dichloroethene 800 878 ug/Kg 110 74 - 129 5 Bromochloromethane 800 817 ug/Kg 102 76 - 131 3 Chloroform 800 826 ug/Kg 103 74 - 133 3 1,1-Trichloroethane 800 998 ug/Kg 126 66 - 150 1 Carbon tetrachloride 800 928 ug/Kg 116 76 - 141 4 Benzene 800 928 ug/Kg 116 76 - 141 4 Benzene 800 837 ug/Kg 105 76 - 131 4 Benzene 800 844 ug/Kg 105 76 - 131 4 Benzene 800 844 ug/Kg 105 76 - 131 3 Trichloroethene 800 976 ug/Kg 105 76 - 131 3 Trichloroethane	1,1-Dichloroethane	800	850				106	70 - 141	4	13
cis-1,2-Dichloroethene 800 878 ug/Kg 110 74. 129 5 Bromochloromethane 800 826 ug/Kg 102 76. 131 3 Chloroform 800 826 ug/Kg 103 74. 133 3 1,1,1-richloroethane 800 1010 ug/Kg 127 69. 144 2 Carbon tetrachloride 800 999 ug/Kg 116 76. 141 4 H-Dichloropropene 800 837 ug/Kg 116 76. 141 4 Benzene 800 837 ug/Kg 115 79. 135 1 Benzene 800 844 ug/Kg 115 69. 132 3 Trichloroethane 800 900 ug/Kg 113 69. 144 5 1,2-Dichloropropane 800 796 ug/Kg 105 99. 75. 136 1 1,2-Dichloropropane 800 871 ug/Kg 101 73. 132 1 10luene	2,2-Dichloropropane						104	62 - 150	18	20
Bromochloromethane 800 817 ug/Kg 102 76-131 3 Chloroform 800 826 ug/Kg 103 74-133 3 L1,1-Trichloroethane 800 1010 ug/Kg 125 66-150 1 Carbon tetrachloride 800 999 ug/Kg 116 76-141 4 Int-Dichloropropene 800 928 ug/Kg 116 76-141 4 Benzene 800 837 ug/Kg 105 79-135 1 1,2-Dichloroethane 800 900 ug/Kg 113 69-144 5 L2-Dichloropropane 800 781 ug/Kg 99 75-136 1 Dibromomethane 800 781 ug/Kg 101 73-132 1 Edich-3-Dichloropropane 800 807 ug/Kg 111 73-132 1 Users-1-3-Dichloropropane 800 881 ug/Kg 102 80-121 1 T-1,	cis-1,2-Dichloroethene	800	878				110	74 ₋ 129	5	14
Chloroform 800 826 ug/Kg 10.3 74.133 3 1.1,1-Trichloroethane 800 1991 ug/Kg 127 69.144 2 Carbon tetrachloride 800 999 ug/Kg 115 66.150 1 1,1-Dichloropropene 800 928 ug/Kg 116 76.141 4 Benzene 800 837 ug/Kg 105 79.135 1 1,2-Dichloropthane 800 844 ug/Kg 105 68.132 3 1,2-Dichloropropane 800 796 ug/Kg 199 75.136 1 1,2-Dichloropropane 800 796 ug/Kg 99 75.136 1 1,2-Dichloropropane 800 807 ug/Kg 101 73.32 1 1,2-Dichloropropane 800 894 ug/Kg 112 80.122 2 1,1,2-Trichloroethane 800 818 ug/Kg 102 80.123 1 1,1,2	Bromochloromethane	800	817				102	76 - 131	3	15
1,1,1-Trichloroethane 800 1010 ug/Kg 127 69-144 2 Carbon tetrachloride 800 999 ug/Kg 116 76-141 4 HDichloropropene 800 928 ug/Kg 116 76-141 4 Benzene 800 837 ug/Kg 105 79-135 1 1,2-Dichloropthane 800 804 ug/Kg 105 68-132 3 1,2-Dichloropropane 800 900 ug/Kg 105 68-132 3 1,2-Dichloropropane 800 796 ug/Kg 99 75-136 1 1,2-Dichloropropane 800 807 ug/Kg 98 72-130 3 Bromodichloromethane 800 807 ug/Kg 110 73-132 1 cis-1,3-Dichloropropene 800 881 ug/Kg 110 80-122 2 Toluene 800 818 ug/Kg 102 80-123 1 tansa-1	Chloroform									13
Carbon tetrachloride 800 999 ug/Kg 125 66-150 1 1,1-Dichloropropene 800 928 ug/Kg 116 76-141 4 Benzene 800 837 ug/Kg 105 79-135 1 1,2-Dichloroethane 800 844 ug/Kg 105 79-135 1 1,2-Dichloropropane 800 900 ug/Kg 113 69-144 5 1,2-Dichloropropane 800 796 ug/Kg 19 72-136 1 Dibromomethane 800 781 ug/Kg 99 72-136 1 Dibromomethane 800 807 ug/Kg 101 73-132 1 Cis-1,3-Dichloropropene 800 894 ug/Kg 112 80-122 2 Toluene 800 818 ug/Kg 110 80-125 0 trans-1,3-Dichloropropene 800 818 ug/Kg 102 80-121 1 1,1,2-Trichlor										14
1,1-Dichloropropene 800 928 ug/Kg 116 76-141 4 Benzene 800 837 ug/Kg 105 79-135 1 1,2-Dichloropethane 800 844 ug/Kg 105 68-132 3 Trichloropethane 800 900 ug/Kg 113 69-144 5 1,2-Dichloropropane 800 796 ug/Kg 99 75-136 1 Dibromodethane 800 807 ug/Kg 88 72-130 3 Bromodichloropropene 800 807 ug/Kg 101 73-132 1 cis-1,3-Dichloropropene 800 881 ug/Kg 112 80-122 2 Toluene 800 818 ug/Kg 102 80-121 1 1,1,2-Trichloroptopene 800 818 ug/Kg 102 80-123 1 1,1,2-Tertachloropthane 800 875 ug/Kg 104 80-123 1 1,1,1,2-Te										12
Benzene 800 837 ug/Kg 105 79 - 135 1 1,2-Dichloroethane 800 844 ug/Kg 105 68 - 132 3 Trichloroethane 800 900 ug/Kg 133 69 - 144 5 1,2-Dichloropropane 800 796 ug/Kg 99 75 - 136 1 Dibromomethane 800 781 ug/Kg 101 73 - 132 1 Bromodichloromethane 800 807 ug/Kg 101 73 - 132 1 cis-1,3-Dichloropropene 800 881 ug/Kg 112 80 - 125 0 trans-1,3-Dichloropropene 800 881 ug/Kg 102 80 - 123 1 trans-1,3-Dichloropropane 800 875 ug/Kg 102 80 - 123 1 trans-1,3-Dichloropropane 800 875 ug/Kg 102 80 - 123 1 trans-1,2-Dichromothane 800 829 ug/Kg 106 75 - 125										11
1,2-Dichloroethane 800 844 ug/Kg 105 68.132 3 Trichloroethene 800 90 ug/Kg 113 69.144 5 1,2-Dichloropropane 800 796 ug/Kg 99 75.136 1 Dibromomethane 800 781 ug/Kg 98 72.130 3 Bromodichloromethane 800 807 ug/Kg 101 73.132 1 cis-1,3-Dichloropropene 800 881 ug/Kg 110 80.122 2 Toluene 800 818 ug/Kg 110 80.125 0 trans-1,3-Dichloropropene 800 818 ug/Kg 102 80.123 1 1,1,2-Trichloroethane 800 875 ug/Kg 102 80.123 1 1,3-Dichloropropane 800 875 ug/Kg 104 80.123 1 Tetrachloroethane 800 858 ug/Kg 106 80.123 1 1,										15
Trichloroethene 800 900 ug/Kg 113 69 - 144 5 1,2-Dichloropropane 800 796 ug/Kg 99 75 - 136 1 Dibromomethane 800 781 ug/Kg 101 73 - 132 3 Bromodichloromethane 800 807 ug/Kg 101 73 - 132 1 cis-1,3-Dichloropropene 800 881 ug/Kg 110 80 - 122 2 Toluene 800 881 ug/Kg 110 80 - 122 2 Toluene 800 881 ug/Kg 102 80 - 121 1 1,1,2-Tichloroptopene 800 875 ug/Kg 109 80 - 123 1 1,12-Tichloroethane 800 875 ug/Kg 109 80 - 123 1 1,3-Dichloropropane 800 829 ug/Kg 106 75 - 125 1 1,3-Dichloropropane 800 829 ug/Kg 106 75 - 125 1										11
1,2-Dichloropropane 800 796 ug/Kg 99 75.136 1 Dibromomethane 800 781 ug/Kg 98 72.130 3 Bromodichloromethane 800 807 ug/Kg 101 73.132 1 cis-1,3-Dichloropropene 800 884 ug/Kg 112 80.122 2 Toluene 800 818 ug/Kg 102 80.121 1 trans-1,3-Dichloropropene 800 818 ug/Kg 102 80.121 1 1,1,2-Trichloroethane 800 875 ug/Kg 102 80.121 1 1,3-Dichloropropane 800 875 ug/Kg 102 80.123 1 1,3-Dichloropropane 800 846 ug/Kg 106 75.125 1 1,3-Dichloropropane 800 848 ug/Kg 106 75.125 1 1,2-Dibromoethane 800 848 ug/Kg 106 80.123 1										10
Dibromomethane 800 781 ug/Kg 98 72 - 130 3 Bromodichloromethane 800 807 ug/Kg 101 73 - 132 1 cis-1,3-Dichloropropene 800 894 ug/Kg 110 80 - 122 2 Toluene 800 881 ug/Kg 110 80 - 123 1 1,1,2-Trichloropropene 800 875 ug/Kg 109 80 - 123 1 1,1,2-Trichloroethane 800 975 ug/Kg 109 80 - 123 1 1,3-Dichloropropane 800 975 ug/Kg 104 80 - 123 1 1,3-Dichloropropane 800 829 ug/Kg 106 75 - 125 1 1,3-Dichloropropane 800 848 ug/Kg 106 75 - 125 1 1,2-Dibromoethane 800 858 ug/Kg 106 75 - 123 2 Chlorobenzene 800 848 ug/Kg 106 80 - 123 1										10
Bromodichloromethane 800 807 ug/Kg 101 73 - 132 1 cis-1,3-Dichloropropene 800 894 ug/Kg 112 80 - 122 2 Toluene 800 881 ug/Kg 110 80 - 122 0 trans-1,3-Dichloropropene 800 818 ug/Kg 102 80 - 121 1 1,1,2-Trichloroethane 800 875 ug/Kg 109 80 - 123 1 Tetrachloroethane 800 975 ug/Kg 104 80 - 123 1 1,3-Dichloropropane 800 829 ug/Kg 104 80 - 123 1 1,3-Dichloropropane 800 86 ug/Kg 106 75 - 125 1 1,3-Dichloropropane 800 86 ug/Kg 106 75 - 125 1 1,3-Dichloropropane 800 86 ug/Kg 106 75 - 125 1 1,2-Dibromothane 800 86 ug/Kg 107 77 - 123 2 <										14
cis-1,3-Dichloropropene 800 894 ug/Kg 112 80-122 2 Toluene 800 881 ug/Kg 110 80-125 0 trans-1,3-Dichloropropene 800 818 ug/Kg 102 80-121 1 1,1,2-Trichloroethane 800 875 ug/Kg 109 80-123 1 tetrachloroethene 800 975 ug/Kg 102 80-123 1 1,3-Dichloropropane 800 829 ug/Kg 104 80-120 0 Dibromochloromethane 800 846 ug/Kg 106 75-125 1 1,2-Dibromoethane 800 858 ug/Kg 106 75-125 1 1,2-Dibromoethane 800 868 ug/Kg 106 80-123 1 1,1,1,2-Tetrachloroethane 800 966 ug/Kg 108 79-128 3 1,1,1,2-Tetrachloroethane 800 952 ug/Kg 114 80-128 2										10
Tolluene 800 881 ug/Kg 110 80-125 0 trans-1,3-Dichloropropene 800 818 ug/Kg 102 80-121 1 1,12-Triichloroethane 800 875 ug/Kg 109 80-123 1 Tetrachloroethane 800 975 ug/Kg 104 80-120 0 1,3-Dichloropropane 800 829 ug/Kg 104 80-120 0 Dibromochloromethane 800 829 ug/Kg 106 75-125 1 1,2-Dibromoethane 800 858 ug/Kg 107 77-123 2 Chlorobenzene 800 848 ug/Kg 106 80-123 1 1,1,2-Erbrachloroethane 800 966 ug/Kg 108 79-128 3 1,1,2,2-Tetrachloroethane 800 952 ug/Kg 108 79-128 3 1,1,2,2-Tetrachloroethane 800 952 ug/Kg 119 80-128 3 <										16
trans-1,3-Dichloropropene 800 818 ug/Kg 102 80 - 121 1 1,1,2-Trichloroethane 800 875 ug/Kg 109 80 - 123 1 Tetrachloroethane 800 975 ug/Kg 122 71 - 136 1 1,3-Dichloropropane 800 829 ug/Kg 104 80 - 120 0 Dibromochloromethane 800 846 ug/Kg 106 80 - 123 1 1,2-Dibromoethane 800 858 ug/Kg 107 77 - 123 2 Chlorobenzene 800 848 ug/Kg 106 80 - 123 1 Ethylbenzene 800 848 ug/Kg 106 80 - 123 1 1,1,1,2-Tetrachloroethane 800 906 ug/Kg 108 79 - 128 3 1,1,2,2-Tetrachloroethane 800 754 ug/Kg 108 79 - 128 3 1,2,3-Tetrachloroethane 800 913 ug/Kg 114 80 - 128										16
1,1,2-Trichloroethane 800 875 ug/Kg 109 80 - 123 1 Tetrachloroethene 800 975 ug/Kg 122 71 - 136 1 1,3-Dichloropropane 800 829 ug/Kg 104 80 - 120 0 Dibromochloromethane 800 846 ug/Kg 106 75 - 125 1 1,2-Dibromoethane 800 858 ug/Kg 107 77 - 123 2 Chlorobenzene 800 848 ug/Kg 106 80 - 123 1 Ethylbenzene 800 906 ug/Kg 113 80 - 123 1 1,1,1,2-Tetrachloroethane 800 906 ug/Kg 113 80 - 123 1 1,1,2,2-Tetrachloroethane 800 754 ug/Kg 108 79 - 128 3 1,1,2,2-Tetrachloroethane 800 754 ug/Kg 94 74 - 120 4 m-Xylene & p-Xylene 800 952 ug/Kg 119 80 - 128 2 o-Xylene 800 913 ug/Kg 114 80 - 12										17
Tetrachloroethene 800 975 ug/kg 122 71.136 1 1,3-Dichloropropane 800 829 ug/kg 104 80.120 0 Dibromochloromethane 800 846 ug/kg 106 75-125 1 1,2-Dibromoethane 800 858 ug/kg 107 77-123 2 Chlorobenzene 800 848 ug/kg 106 80-123 1 Ethylbenzene 800 966 ug/kg 113 80-123 1 Ethylbenzene 800 966 ug/kg 106 80-123 1 1,1,1,2-Tetrachloroethane 800 862 ug/kg 108 79-128 3 1,1,1,2-Tetrachloroethane 800 754 ug/kg 108 79-128 3 1,1,2,2-Tetrachloroethane 800 754 ug/kg 108 79-128 3 0-Xylene 800 952 ug/kg 118 80-128 2 0-Xy	• •									15
1,3-Dichloropropane 800 829 ug/Kg 104 80-120 0 Dibromochloromethane 800 846 ug/Kg 106 75-125 1 1,2-Dibromoethane 800 858 ug/Kg 107 77-123 2 Chlorobenzene 800 848 ug/Kg 106 80-123 1 Ethylbenzene 800 906 ug/Kg 113 80-127 1 1,1,2-Tetrachloroethane 800 862 ug/Kg 108 79-128 3 1,1,2,2-Tetrachloroethane 800 754 ug/Kg 94 74-120 4 m-Xylene & p-Xylene 800 952 ug/Kg 119 80-128 2 0-Xylene 800 913 ug/Kg 114 80-125 3 Styrene 800 913 ug/Kg 114 79-129 0 Bromoform 800 918 ug/Kg 115 65-134 2 Isopropylbenzene 800 957 ug/Kg 116 78-126 4 N-Pr										16
Dibromochloromethane 800 846 ug/Kg 106 75 - 125 1 1,2-Dibromoethane 800 858 ug/Kg 107 77 - 123 2 Chlorobenzene 800 848 ug/Kg 106 80 - 123 1 Ethylbenzene 800 906 ug/Kg 113 80 - 123 1 1,1,2-Tetrachloroethane 800 862 ug/Kg 108 79 - 128 3 1,1,2-Tetrachloroethane 800 862 ug/Kg 108 79 - 128 3 1,1,2-Tetrachloroethane 800 754 ug/Kg 108 79 - 128 3 1,1,2,2-Tetrachloroethane 800 952 ug/Kg 119 80 - 128 3 1,1,2,2-Tetrachloroethane 800 952 ug/Kg 119 80 - 128 2 0-Xylene 800 913 ug/Kg 114 80 - 128 2 Styrene 800 913 ug/Kg 114 80 - 128 2										18
1,2-Dibromoethane 800 858 ug/Kg 107 77 - 123 2 Chlorobenzene 800 848 ug/Kg 106 80 - 123 1 Ethylbenzene 800 906 ug/Kg 113 80 - 127 1 1,1,1,2-Tetrachloroethane 800 862 ug/Kg 108 79 - 128 3 1,1,2,2-Tetrachloroethane 800 754 ug/Kg 94 74 - 120 4 m-Xylene & p-Xylene 800 952 ug/Kg 119 80 - 128 2 o-Xylene 800 913 ug/Kg 114 80 - 125 3 Styrene 800 913 ug/Kg 114 79 - 129 0 Bromoform 800 918 ug/Kg 115 65 - 134 2 Isopropylbenzene 800 957 ug/Kg 115 65 - 134 2 Isopropylbenzene 800 927 ug/Kg 116 78 - 126 4 N-Propylbenzene 800 848 ug/Kg 106 70 - 127 1 <	• •									11
Chlorobenzene 800 848 ug/Kg 106 80-123 1 Ethylbenzene 800 906 ug/Kg 113 80-127 1 1,1,2,2-Tetrachloroethane 800 862 ug/Kg 108 79-128 3 1,1,2,2-Tetrachloroethane 800 754 ug/Kg 94 74-120 4 m-Xylene & p-Xylene 800 952 ug/Kg 119 80-128 2 o-Xylene 800 913 ug/Kg 114 80-125 3 Styrene 800 913 ug/Kg 114 79-129 0 Bromoform 800 918 ug/Kg 115 65-134 2 Isopropylbenzene 800 957 ug/Kg 115 65-134 2 Isopropylbenzene 800 927 ug/Kg 116 78-126 4 N-Propylbenzene 800 848 ug/Kg 113 74-127 1 1,2,3-Trichloropropane										11
Ethylbenzene 800 906 ug/Kg 113 80 - 127 1 1,1,1,2-Tetrachloroethane 800 862 ug/Kg 108 79 - 128 3 1,1,2,2-Tetrachloroethane 800 754 ug/Kg 94 74 - 120 4 m-Xylene & p-Xylene 800 952 ug/Kg 119 80 - 128 2 o-Xylene 800 913 ug/Kg 114 80 - 125 3 Styrene 800 913 ug/Kg 114 79 - 129 0 Bromoform 800 918 ug/Kg 115 65 - 134 2 Isopropylbenzene 800 957 ug/Kg 120 80 - 128 3 Bromobenzene 800 927 ug/Kg 116 78 - 126 4 N-Propylbenzene 800 904 ug/Kg 113 74 - 127 1 1,2,3-Trichloropropane 800 848 ug/Kg 106 70 - 127 1 2-Chlorotoluene 800 897 ug/Kg 112 72 - 128 0	•									10
1,1,1,2-Tetrachloroethane 800 862 ug/Kg 108 79-128 3 1,1,2,2-Tetrachloroethane 800 754 ug/Kg 94 74-120 4 m-Xylene & p-Xylene 800 952 ug/Kg 119 80-128 2 o-Xylene 800 913 ug/Kg 114 80-125 3 Styrene 800 913 ug/Kg 114 79-129 0 Bromoform 800 918 ug/Kg 115 65-134 2 Isopropylbenzene 800 957 ug/Kg 120 80-128 3 Bromobenzene 800 927 ug/Kg 116 78-126 4 N-Propylbenzene 800 904 ug/Kg 113 74-127 1 1,2,3-Trichloropropane 800 848 ug/Kg 106 70-127 1 2-Chlorotoluene 800 869 ug/Kg 109 77-127 0 1,3,5-Trimethylbenzene 800 845 ug/Kg 106 78-126 1 <										16
1,1,2,2-Tetrachloroethane 800 754 ug/Kg 94 74 - 120 4 m-Xylene & p-Xylene 800 952 ug/Kg 119 80 - 128 2 o-Xylene 800 913 ug/Kg 114 80 - 125 3 Styrene 800 913 ug/Kg 114 79 - 129 0 Bromoform 800 918 ug/Kg 115 65 - 134 2 Isopropylbenzene 800 957 ug/Kg 120 80 - 128 3 Bromobenzene 800 927 ug/Kg 116 78 - 126 4 N-Propylbenzene 800 904 ug/Kg 113 74 - 127 1 1,2,3-Trichloropropane 800 848 ug/Kg 106 70 - 127 1 2-Chlorotoluene 800 869 ug/Kg 109 77 - 127 0 1,3,5-Trimethylbenzene 800 897 ug/Kg 106 78 - 126 1 4-Chlorotoluene 800 845 ug/Kg 106 78 - 126 1										11
m-Xylene & p-Xylene 800 952 ug/Kg 119 80 - 128 2 o-Xylene 800 913 ug/Kg 114 80 - 125 3 Styrene 800 913 ug/Kg 114 79 - 129 0 Bromoform 800 918 ug/Kg 115 65 - 134 2 Isopropylbenzene 800 957 ug/Kg 120 80 - 128 3 Bromobenzene 800 927 ug/Kg 116 78 - 126 4 N-Propylbenzene 800 904 ug/Kg 113 74 - 127 1 1,2,3-Trichloropropane 800 848 ug/Kg 106 70 - 127 1 2-Chlorotoluene 800 869 ug/Kg 109 77 - 127 0 1,3,5-Trimethylbenzene 800 897 ug/Kg 112 72 - 128 0 4-Chlorotoluene 800 845 ug/Kg 106 78 - 126 1										18
o-Xylene 800 913 ug/Kg 114 80 - 125 3 Styrene 800 913 ug/Kg 114 79 - 129 0 Bromoform 800 918 ug/Kg 115 65 - 134 2 Isopropylbenzene 800 957 ug/Kg 120 80 - 128 3 Bromobenzene 800 927 ug/Kg 116 78 - 126 4 N-Propylbenzene 800 904 ug/Kg 113 74 - 127 1 1,2,3-Trichloropropane 800 848 ug/Kg 106 70 - 127 1 2-Chlorotoluene 800 869 ug/Kg 109 77 - 127 0 1,3,5-Trimethylbenzene 800 897 ug/Kg 112 72 - 128 0 4-Chlorotoluene 800 845 ug/Kg 106 78 - 126 1										13
Styrene 800 913 ug/Kg 114 79 - 129 0 Bromoform 800 918 ug/Kg 115 65 - 134 2 Isopropylbenzene 800 957 ug/Kg 120 80 - 128 3 Bromobenzene 800 927 ug/Kg 116 78 - 126 4 N-Propylbenzene 800 904 ug/Kg 113 74 - 127 1 1,2,3-Trichloropropane 800 848 ug/Kg 106 70 - 127 1 2-Chlorotoluene 800 869 ug/Kg 109 77 - 127 0 1,3,5-Trimethylbenzene 800 897 ug/Kg 112 72 - 128 0 4-Chlorotoluene 800 845 ug/Kg 106 78 - 126 1										14
Bromoform 800 918 ug/Kg 115 65 - 134 2 Isopropylbenzene 800 957 ug/Kg 120 80 - 128 3 Bromobenzene 800 927 ug/Kg 116 78 - 126 4 N-Propylbenzene 800 904 ug/Kg 113 74 - 127 1 1,2,3-Trichloropropane 800 848 ug/Kg 106 70 - 127 1 2-Chlorotoluene 800 869 ug/Kg 109 77 - 127 0 1,3,5-Trimethylbenzene 800 897 ug/Kg 112 72 - 128 0 4-Chlorotoluene 800 845 ug/Kg 106 78 - 126 1	-									15
Isopropylbenzene 800 957 ug/Kg 120 80 - 128 3 Bromobenzene 800 927 ug/Kg 116 78 - 126 4 N-Propylbenzene 800 904 ug/Kg 113 74 - 127 1 1,2,3-Trichloropropane 800 848 ug/Kg 106 70 - 127 1 2-Chlorotoluene 800 869 ug/Kg 109 77 - 127 0 1,3,5-Trimethylbenzene 800 897 ug/Kg 112 72 - 128 0 4-Chlorotoluene 800 845 ug/Kg 106 78 - 126 1										17
Bromobenzene 800 927 ug/Kg 116 78 - 126 4 N-Propylbenzene 800 904 ug/Kg 113 74 - 127 1 1,2,3-Trichloropropane 800 848 ug/Kg 106 70 - 127 1 2-Chlorotoluene 800 869 ug/Kg 109 77 - 127 0 1,3,5-Trimethylbenzene 800 897 ug/Kg 112 72 - 128 0 4-Chlorotoluene 800 845 ug/Kg 106 78 - 126 1										17
N-Propylbenzene 800 904 ug/Kg 113 74 - 127 1 1,2,3-Trichloropropane 800 848 ug/Kg 106 70 - 127 1 2-Chlorotoluene 800 869 ug/Kg 109 77 - 127 0 1,3,5-Trimethylbenzene 800 897 ug/Kg 112 72 - 128 0 4-Chlorotoluene 800 845 ug/Kg 106 78 - 126 1										
1,2,3-Trichloropropane 800 848 ug/Kg 106 70 - 127 1 2-Chlorotoluene 800 869 ug/Kg 109 77 - 127 0 1,3,5-Trimethylbenzene 800 897 ug/Kg 112 72 - 128 0 4-Chlorotoluene 800 845 ug/Kg 106 78 - 126 1										12
2-Chlorotoluene 800 869 ug/Kg 109 77 - 127 0 1,3,5-Trimethylbenzene 800 897 ug/Kg 112 72 - 128 0 4-Chlorotoluene 800 845 ug/Kg 106 78 - 126 1										17
1,3,5-Trimethylbenzene 800 897 ug/Kg 112 72 - 128 0 4-Chlorotoluene 800 845 ug/Kg 106 78 - 126 1	• •									16 16
4-Chlorotoluene 800 845 ug/Kg 106 78 - 126 1										16
										16
T-Butvipenzene 800 916 μα/Κα 114 79 - 127 2										16
1,2,4-Trimethylbenzene 800 890 ug/Kg 111 73 - 127 1	-									13 12

TestAmerica Seattle

12/11/2018

Page 13 of 29

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 580-289674/3-A

Matrix: Solid

Analysis Batch: 289687

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 289674

/ ilialy old Batolli 200001							1 TOP Datom 20001 T		
•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
sec-Butylbenzene	800	903		ug/Kg		113	77 - 129	1	12
1,3-Dichlorobenzene	800	847		ug/Kg		106	78 - 122	1	12
4-Isopropyltoluene	800	860		ug/Kg		107	71 - 129	2	11
1,4-Dichlorobenzene	800	838		ug/Kg		105	77 - 123	2	12
n-Butylbenzene	800	896		ug/Kg		112	77 - 130	5	12
1,2-Dichlorobenzene	800	845		ug/Kg		106	78 - 120	2	12
1,2-Dibromo-3-Chloropropane	800	736		ug/Kg		92	53 - 135	4	20
1,2,4-Trichlorobenzene	800	782		ug/Kg		98	68 - 131	3	16
1,2,3-Trichlorobenzene	800	572		ug/Kg		72	71 - 129	4	18
Hexachlorobutadiene	800	893		ug/Kg		112	65 - 136	2	19
Naphthalene	800	546		ug/Kg		68	67 - 124	2	17
Methyl tert-butyl ether	800	833		ug/Kg		104	75 - 126	3	15

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	104		80 - 120
4-Bromofluorobenzene (Surr)	103		80 - 120
Dibromofluoromethane (Surr)	101		80 - 120
Trifluorotoluene (Surr)	97		80 - 120
1,2-Dichloroethane-d4 (Surr)	98		80 - 121

Method: 8151A - Herbicides (GC/MS)

Lab Sample ID: MB 580-290141/1-A

Matrix: Solid

Analysis Batch: 290489

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 290141

•	MB	MB						•	
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dalapon	ND		160		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
Dicamba	ND		90		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
Mecoprop	ND		90		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
MCPA	ND		90		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
Dichlorprop	ND		90		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
2,4-D	ND		90		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
Pentachlorophenol	ND		160		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
Silvex (2,4,5-TP)	ND		90		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
2,4,5-T	ND		90		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
Dinoseb	ND		160		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
2,4-DB	ND		90		ug/Kg		12/03/18 12:34	12/06/18 15:00	1

MB	М

Surrogate	%Recovery	Qualifier	Limits
2,4-Dichlorophenylacetic acid	110		53 - 150

Prepared	Analyzed	Dil Fac
12/03/18 12:34	12/06/18 15:00	<u></u>

Client Sample ID: Lab Control Sample Dup

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Method: 8151A - Herbicides (GC/MS) (Continued)

Lab Sample ID: LCS 580-290141/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 290489 Prep Batch: 290141**

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
333	183		ug/Kg		55	15 - 120	
333	295		ug/Kg		88	36 - 134	
333	342		ug/Kg		103	48 - 150	
333	320		ug/Kg		96	51 ₋ 150	
333	362		ug/Kg		109	47 - 150	
333	332		ug/Kg		100	51 ₋ 150	
333	340		ug/Kg		102	44 - 150	
333	389		ug/Kg		117	53 ₋ 150	
333	324		ug/Kg		97	56 ₋ 150	
333	259		ug/Kg		78	38 - 150	
333	391		ug/Kg		117	47 ₋ 150	
	Added 333 333 333 333 333 333 333	Added Result 333 183 333 295 333 342 333 362 333 332 333 340 333 389 333 324 333 259	Added Result Qualifier 333 183 333 295 333 342 333 320 333 362 333 332 333 340 333 389 333 324 333 259	Added Result Qualifier Unit 333 183 ug/Kg 333 295 ug/Kg 333 342 ug/Kg 333 320 ug/Kg 333 362 ug/Kg 333 332 ug/Kg 333 340 ug/Kg 333 389 ug/Kg 333 324 ug/Kg 333 259 ug/Kg	Added Result Qualifier Unit D 333 183 ug/Kg ug/Kg 333 295 ug/Kg 333 342 ug/Kg 333 362 ug/Kg 333 332 ug/Kg 333 340 ug/Kg 333 389 ug/Kg 333 324 ug/Kg 333 259 ug/Kg	Added Result Qualifier Unit D %Rec 333 183 ug/Kg 55 333 295 ug/Kg 88 333 342 ug/Kg 103 333 320 ug/Kg 96 333 362 ug/Kg 109 333 332 ug/Kg 100 333 340 ug/Kg 102 333 389 ug/Kg 117 333 324 ug/Kg 97 333 259 ug/Kg 78	Added Result Qualifier Unit D %Rec Limits 333 183 ug/Kg 55 15 - 120 333 295 ug/Kg 88 36 - 134 333 342 ug/Kg 103 48 - 150 333 320 ug/Kg 96 51 - 150 333 362 ug/Kg 109 47 - 150 333 332 ug/Kg 100 51 - 150 333 340 ug/Kg 102 44 - 150 333 389 ug/Kg 117 53 - 150 333 324 ug/Kg 97 56 - 150 333 259 ug/Kg 78 38 - 150

LCS LCS %Recovery Qualifier Limits Surrogate 53 - 150 2,4-Dichlorophenylacetic acid 91

Lab Sample ID: LCSD 580-290141/3-A

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 290489 Prep Batch: 290141** LCSD LCSD Spike %Rec. **RPD Analyte** Added Result Qualifier Unit %Rec Limits **RPD** Limit Dalapon 333 209 ug/Kg 63 15 - 120 13 333 321 ug/Kg 96 36 - 134 9

Dicamba 40 333 362 109 48 - 150 40 Mecoprop ug/Kg 333 337 **MCPA** 101 51 - 150 5 40 ug/Kg Dichlorprop 333 380 114 47 - 150 40 ug/Kg 2,4-D 333 307 92 51 - 150 40 ug/Kg 8 Pentachlorophenol 333 351 ug/Kg 105 44 - 150 3 40 Silvex (2,4,5-TP) 333 379 ug/Kg 114 53 - 1503 40 2,4,5-T 333 341 ug/Kg 102 56 - 150 40 Dinoseb 333 273 ug/Kg 82 38 - 150 5 40 2,4-DB 333 395 119 47 - 150 ug/Kg 40

LCSD LCSD Surrogate %Recovery Qualifier Limits 2,4-Dichlorophenylacetic acid 53 - 150

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 580-290094/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 290528 Prep Batch: 290094

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
2-Methylnaphthalene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
1-Methylnaphthalene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Acenaphthylene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Acenaphthene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1

TestAmerica Seattle

Page 15 of 29

12/11/2018

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: MB 580-290094/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Total/NA Prep Batch: 290094**

Analysis Batch: 290528 мв мв

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluorene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Phenanthrene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Anthracene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Fluoranthene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Pyrene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Benzo[a]anthracene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Chrysene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Benzo[b]fluoranthene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Benzo[k]fluoranthene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Benzo[a]pyrene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Indeno[1,2,3-cd]pyrene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Dibenz(a,h)anthracene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Benzo[g,h,i]perylene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1

MB MB Surrogate %Recovery Qualifier Limits

Prepared Analyzed Dil Fac <u>12/01/18 20:47</u> <u>12/07/18 14:03</u> Terphenyl-d14 121 X 57 - 120

Lab Sample ID: LCS 580-290094/2-A

Matrix: Solid

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 290528	Spike	LCS	LCS				Prep Batch: 290094 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Naphthalene	1000	919		ug/Kg		92	70 - 120
2-Methylnaphthalene	1000	1010		ug/Kg		101	68 - 120
1-Methylnaphthalene	1000	986		ug/Kg		99	71 - 120
Acenaphthylene	1000	1020		ug/Kg		102	68 - 120
Acenaphthene	1000	928		ug/Kg		93	68 - 120
Fluorene	1000	972		ug/Kg		97	73 - 120
Phenanthrene	1000	933		ug/Kg		93	73 - 120
Anthracene	1000	1040		ug/Kg		104	73 - 125
Fluoranthene	1000	1070		ug/Kg		107	74 - 125
Pyrene	1000	1010		ug/Kg		101	70 - 120
Benzo[a]anthracene	1000	1050		ug/Kg		105	66 - 120
Chrysene	1000	908		ug/Kg		91	69 - 120
Benzo[b]fluoranthene	1000	925		ug/Kg		92	63 - 121
Benzo[k]fluoranthene	1000	936		ug/Kg		94	63 - 123
Benzo[a]pyrene	1000	988		ug/Kg		99	72 - 124
Indeno[1,2,3-cd]pyrene	1000	878		ug/Kg		88	65 - 121
Dibenz(a,h)anthracene	1000	970		ug/Kg		97	70 - 125
Benzo[g,h,i]perylene	1000	960		ug/Kg		96	63 - 120

LCS LCS Surrogate %Recovery Qualifier Limits Terphenyl-d14 109 57 - 120

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Method: 8081A - Organochlorine Pesticides (GC)

Lab Sample ID: MB 580-290263/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 290437 Prep Batch: 290263**

MB MB Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Aldrin $\overline{\mathsf{ND}}$ 3.0 12/04/18 14:42 12/06/18 14:14 ug/Kg alpha-BHC ND 12/04/18 14:42 12/06/18 14:14 2.0 ug/Kg 1 ND beta-BHC 5.0 12/04/18 14:42 12/06/18 14:14 ug/Kg delta-BHC 12/04/18 14:42 12/06/18 14:14 ND 3.0 ug/Kg gamma-BHC (Lindane) ND 2.0 ug/Kg 12/04/18 14:42 12/06/18 14:14 4,4'-DDD ND 2.0 ug/Kg 12/04/18 14:42 12/06/18 14:14 4,4'-DDE ND 2.0 ug/Kg 12/04/18 14:42 12/06/18 14:14 4,4'-DDT 2.0 12/04/18 14:42 12/06/18 14:14 ND ug/Kg Dieldrin ND 2.0 ug/Kg 12/04/18 14:42 12/06/18 14:14 Endosulfan I ND 2.0 ug/Kg 12/04/18 14:42 12/06/18 14:14 Endosulfan II ND 12/04/18 14:42 12/06/18 14:14 2.0 ug/Kg Endosulfan sulfate ND 2.0 ug/Kg 12/04/18 14:42 12/06/18 14:14 Endrin ND 2.0 ug/Kg 12/04/18 14:42 12/06/18 14:14 Endrin aldehyde ND 20 ug/Kg 12/04/18 14:42 12/06/18 14:14 Heptachlor ND 3.0 ug/Kg 12/04/18 14:42 12/06/18 14:14 Heptachlor epoxide ND 3.0 12/04/18 14:42 12/06/18 14:14 ug/Kg 10 Methoxychlor ND ug/Kg 12/04/18 14:42 12/06/18 14:14 12/04/18 14:42 12/06/18 14:14 Endrin ketone ND 2.0 ug/Kg Toxaphene ND 100 ug/Kg 12/04/18 14:42 12/06/18 14:14 cis-Chlordane ND 2.0 ug/Kg 12/04/18 14:42 12/06/18 14:14 trans-Chlordane ND 3.0 ug/Kg 12/04/18 14:42 12/06/18 14:14

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 89 50 - 123 12/04/18 14:42 12/06/18 14:14 Tetrachloro-m-xylene DCB Decachlorobiphenyl 97 43 - 129 12/04/18 14:42 12/06/18 14:14

Lab Sample ID: LCS 580-290263/2-A

Matriv: Solid

Analysis Batch: 290437	Spike	LCS	LCS				Prep Type: Total/NA Prep Batch: 290263 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aldrin	20.0	18.4		ug/Kg		92	56 - 121
alpha-BHC	20.0	17.9		ug/Kg		90	62 - 120
beta-BHC	20.0	17.2		ug/Kg		86	62 - 120
delta-BHC	20.0	16.8		ug/Kg		84	53 - 124
gamma-BHC (Lindane)	20.0	17.1		ug/Kg		85	55 - 120
4,4'-DDD	20.0	16.4		ug/Kg		82	61 - 122
4,4'-DDE	20.0	17.0		ug/Kg		85	53 - 124
4,4'-DDT	20.0	19.1		ug/Kg		95	57 - 137
Dieldrin	20.0	19.0		ug/Kg		95	63 - 121
Endosulfan I	20.0	18.3		ug/Kg		92	64 - 121
Endosulfan II	20.0	18.2		ug/Kg		91	37 - 139
Endosulfan sulfate	20.0	18.3		ug/Kg		92	63 - 120
Endrin	20.0	21.9		ug/Kg		110	70 - 127
Endrin aldehyde	20.0	15.9	J	ug/Kg		80	36 - 150
Heptachlor	20.0	19.6		ug/Kg		98	64 - 124
Heptachlor epoxide	20.0	18.6		ug/Kg		93	62 - 120
Methoxychlor	20.0	19.3		ug/Kg		96	61 - 130

TestAmerica Seattle

Page 17 of 29

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCS 580-290263/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA Prep Batch: 290263 Analysis Batch: 290437**

LCS LCS Spike %Rec. Added Result Qualifier Analyte Unit D %Rec Limits Endrin ketone 20.0 18.8 94 56 - 120 ug/Kg cis-Chlordane 20.0 18.1 ug/Kg 91 62 - 120 trans-Chlordane 20.0 19.1 ug/Kg 96 60 - 120

LCS LCS Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 82 50 - 123 DCB Decachlorobiphenyl 93 43 - 129

Lab Sample ID: LCS 580-290263/4-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 290437

Prep Batch: 290263 Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit D %Rec Limits Toxaphene 500 505 ug/Kg 101 57 - 126

LCS LCS Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 86 50 - 123 DCB Decachlorobiphenyl 43 - 129 93

Lab Sample ID: LCSD 580-290263/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Tetrachloro-m-xylene

Prep Type: Total/NA Analysis Batch: 290437 Prep Batch: 290263

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aldrin	20.0	19.7		ug/Kg		98	56 - 121	7	18
alpha-BHC	20.0	19.1		ug/Kg		96	62 - 120	6	15
beta-BHC	20.0	19.4		ug/Kg		97	62 - 120	12	19
delta-BHC	20.0	17.9		ug/Kg		89	53 - 124	6	18
gamma-BHC (Lindane)	20.0	18.4		ug/Kg		92	55 - 120	7	18
4,4'-DDD	20.0	19.2		ug/Kg		96	61 - 122	16	18
4,4'-DDE	20.0	19.5		ug/Kg		98	53 - 124	14	18
4,4'-DDT	20.0	20.2		ug/Kg		101	57 - 137	6	23
Dieldrin	20.0	20.4		ug/Kg		102	63 - 121	7	19
Endosulfan I	20.0	20.5		ug/Kg		103	64 - 121	11	20
Endosulfan II	20.0	19.8		ug/Kg		99	37 - 139	8	18
Endosulfan sulfate	20.0	19.4		ug/Kg		97	63 - 120	6	19
Endrin	20.0	23.1		ug/Kg		115	70 - 127	5	20
Endrin aldehyde	20.0	17.7	J	ug/Kg		88	36 - 150	10	24
Heptachlor	20.0	20.3		ug/Kg		101	64 - 124	3	17
Heptachlor epoxide	20.0	19.7		ug/Kg		99	62 - 120	6	20
Methoxychlor	20.0	20.6		ug/Kg		103	61 - 130	7	20
Endrin ketone	20.0	20.0		ug/Kg		100	56 - 120	6	18
cis-Chlordane	20.0	19.9		ug/Kg		100	62 - 120	9	18
trans-Chlordane	20.0	20.6		ug/Kg		103	60 - 120	8	19

LCSD LCSD Surrogate %Recovery Qualifier Limits

50 - 123

93

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCSD 580-290263/3-A

Lab Sample ID: LCSD 580-290263/5-A

Matrix: Solid

Analysis Batch: 290437

Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA**

Prep Batch: 290263

LCSD LCSD

Surrogate %Recovery Qualifier Limits DCB Decachlorobiphenyl 43 - 129 105

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Solid Analysis Batch: 290437 Prep Batch: 290263 Spike LCSD LCSD %Rec. RPD

Added Result Qualifier Limits RPD Limit **Analyte** Unit D %Rec Toxaphene 500 502 ug/Kg 100 57 - 126 1 24

LCSD LCSD

%Recovery Qualifier Limits Surrogate Tetrachloro-m-xylene 88 50 - 123 DCB Decachlorobiphenyl 96 43 - 129

Lab Sample ID: 580-82025-1 MS

Matrix: Solid

Analysis Batch: 290437

Client Sample ID: SS-01 Prep Type: Total/NA

Prep Batch: 290263

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aldrin	ND		24.8	20.0		ug/Kg	\	81	56 - 121
alpha-BHC	ND		24.8	21.3		ug/Kg	₩	86	62 _ 120
beta-BHC	ND		24.8	ND		ug/Kg	☼	83	62 _ 120
delta-BHC	ND		24.8	20.5		ug/Kg	₩.	82	53 - 124
gamma-BHC (Lindane)	ND		24.8	20.3		ug/Kg	☼	82	55 ₋ 120
4,4'-DDD	ND		24.8	19.0		ug/Kg	₩	77	61 - 122
4,4'-DDE	ND		24.8	19.5		ug/Kg	₩.	79	53 - 124
4,4'-DDT	ND		24.8	19.8		ug/Kg	☼	80	57 ₋ 137
Dieldrin	ND		24.8	18.3		ug/Kg	₩	74	63 - 121
Endosulfan I	ND		24.8	19.0		ug/Kg	₩.	77	64 - 121
Endosulfan II	ND		24.8	19.3		ug/Kg	₩	78	37 _ 139
Endosulfan sulfate	ND		24.8	17.2		ug/Kg	₩	69	63 - 120
Endrin	ND		24.8	22.9		ug/Kg		92	70 - 127
Endrin aldehyde	ND		24.8	ND		ug/Kg	₩	NC	36 - 150
Heptachlor	ND		24.8	20.6		ug/Kg	☼	83	64 - 124
Heptachlor epoxide	ND		24.8	19.0		ug/Kg	₩	77	62 - 120
Methoxychlor	ND		24.8	ND		ug/Kg	☼	79	61 - 130
Endrin ketone	ND		24.8	17.5		ug/Kg	₽	70	56 - 120
cis-Chlordane	ND		24.8	19.0		ug/Kg	₩.	77	62 - 120
trans-Chlordane	ND		24.8	ND		ug/Kg	☼	76	60 - 120

MS MS Qualifier Surrogate %Recovery

Limits 50 - 123 Tetrachloro-m-xylene 83 DCB Decachlorobiphenyl 78 43 - 129

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

3

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: 580-82025-1 MSD

Matrix: Solid

Analysis Batch: 290437

Client Sample ID: SS-01 Prep Type: Total/NA Prep Batch: 290263

•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aldrin	ND		23.0	20.4		ug/Kg	<u> </u>	89	56 - 121	2	18
alpha-BHC	ND		23.0	20.6		ug/Kg	₩	90	62 - 120	3	15
beta-BHC	ND		23.0	ND		ug/Kg	₩	90	62 - 120	0	19
delta-BHC	ND		23.0	20.2		ug/Kg	₩.	88	53 - 124	1	18
gamma-BHC (Lindane)	ND		23.0	20.2		ug/Kg	₩	88	55 - 120	0	18
4,4'-DDD	ND		23.0	19.4		ug/Kg	₩	85	61 - 122	2	18
4,4'-DDE	ND		23.0	18.7		ug/Kg	₩.	81	53 - 124	4	18
4,4'-DDT	ND		23.0	18.7		ug/Kg	₩	82	57 - 137	6	23
Dieldrin	ND		23.0	18.2		ug/Kg	≎	79	63 - 121	0	19
Endosulfan I	ND		23.0	18.4		ug/Kg	₩.	80	64 - 121	3	20
Endosulfan II	ND		23.0	19.2		ug/Kg	≎	84	37 - 139	1	18
Endosulfan sulfate	ND		23.0	16.9		ug/Kg	₩	73	63 - 120	2	19
Endrin	ND		23.0	22.8		ug/Kg	₩	99	70 - 127	0	20
Endrin aldehyde	ND		23.0	ND		ug/Kg	≎	NC	36 - 150	NC	24
Heptachlor	ND		23.0	20.0		ug/Kg	₩	87	64 - 124	3	17
Heptachlor epoxide	ND		23.0	18.7		ug/Kg	*	82	62 - 120	2	20
Methoxychlor	ND		23.0	ND		ug/Kg	₩	78	61 - 130	9	20
Endrin ketone	ND		23.0	16.8		ug/Kg	≎	73	56 - 120	4	18
cis-Chlordane	ND		23.0	18.2		ug/Kg	\$	79	62 - 120	4	18
trans-Chlordane	ND		23.0	18.6		ug/Kg	☼	81	60 - 120	1	19

MSD MSD

Surrogate	%Recovery Qualifier	Limits
Tetrachloro-m-xylene	92	50 - 123
DCB Decachlorobiphenyl	84	43 - 129

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 580-290263/1-A

Matrix: Solid

Analysis Batch: 290587

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 290263

	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.020		mg/Kg		12/04/18 14:42	12/06/18 13:53	1
PCB-1221	ND		0.020		mg/Kg		12/04/18 14:42	12/06/18 13:53	1
PCB-1232	ND		0.020		mg/Kg		12/04/18 14:42	12/06/18 13:53	1
PCB-1242	ND		0.020		mg/Kg		12/04/18 14:42	12/06/18 13:53	1
PCB-1248	ND		0.020		mg/Kg		12/04/18 14:42	12/06/18 13:53	1
PCB-1254	ND		0.020		mg/Kg		12/04/18 14:42	12/06/18 13:53	1
PCB-1260	ND		0.020		mg/Kg		12/04/18 14:42	12/06/18 13:53	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	102		54 - 142	12/04/18 14:42	12/06/18 13:53	1
Tetrachloro-m-xylene	92		58 - 122	12/04/18 14:42	12/06/18 13:53	1

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

70 - 129

96

Prep Type: Total/NA

Prep Batch: 290093

Prep Type: Total/NA

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: LCS 580-290263/6-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA Analysis Batch: 290587 **Prep Batch: 290263** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits PCB-1016 0.100 96 64 - 120 0.0962 mg/Kg PCB-1260 0.100 0.0912 91 63 - 130 mg/Kg LCS LCS

%Recovery Qualifier Limits Surrogate DCB Decachlorobiphenyl 92 54 - 142 Tetrachloro-m-xylene 96 58 - 122

Lab Sample ID: LCSD 580-290263/7-A

Matrix: Solid Analysis Batch: 290587

Analysis Batch: 290587							Prep Batch: 290263			
	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
PCB-1016	0.100	0.0985		mg/Kg		99	64 - 120	2	21	
PCB-1260	0.100	0.0954		mg/Kg		95	63 - 130	5	25	

LCSD LCSD %Recovery Qualifier Limits Surrogate 93 54 - 142 DCB Decachlorobiphenyl Tetrachloro-m-xylene 78 58 - 122

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 580-290093/1-A

Matrix: Solid

Analysis Batch: 290662

	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	ND		50		mg/Kg		12/01/18 19:40	12/10/18 19:26	1
Motor Oil (>C24-C36)	ND		50		mg/Kg		12/01/18 19:40	12/10/18 19:26	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	91		50 - 150				12/01/18 19:40	12/10/18 19:26	

Lab Sample ID: LCS 580-290093/2-A **Matrix: Solid**

Prep Batch: 290093 Analysis Batch: 290662 LCS LCS Spike %Rec. Added Result Qualifier Analyte Unit %Rec Limits 90 70 - 125

#2 Diesel (C10-C24) 500 448 mg/Kg Motor Oil (>C24-C36) 500 481 mg/Kg LCS LCS

Limits Surrogate %Recovery Qualifier 50 - 150 o-Terphenyl 70

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

%Recovery Qualifier

76

Lab Sample ID: LCSD 580-290093/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 290662** Prep Batch: 290093 Spike LCSD LCSD %Rec. **RPD** Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit 500 2 #2 Diesel (C10-C24) 455 91 70 - 125 16 mg/Kg Motor Oil (>C24-C36) 500 495 99 70 - 129 3 16 mg/Kg LCSD LCSD

I imits

50 - 150

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 580-290025/19-A Client Sample ID: Method Blank

Matrix: Solid

Surrogate

o-Terphenyl

Prep Type: Total/NA **Analysis Batch: 290167** Prep Batch: 290025

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		3.0		mg/Kg		11/30/18 11:36	12/03/18 14:01	1
Barium	ND		0.50		mg/Kg		11/30/18 11:36	12/03/18 14:01	1
Cadmium	ND		1.0		mg/Kg		11/30/18 11:36	12/03/18 14:01	1
Chromium	ND		1.3		mg/Kg		11/30/18 11:36	12/03/18 14:01	1
Lead	ND		1.5		mg/Kg		11/30/18 11:36	12/03/18 14:01	1
Selenium	ND		5.0		mg/Kg		11/30/18 11:36	12/03/18 14:01	1
Silver	ND		2.5		mg/Kg		11/30/18 11:36	12/03/18 14:01	1

Lab Sample ID: LCS 580-290025/20-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 290167** Prep Batch: 290025

LCS LCS Spike %Rec. Result Qualifier Analyte Added Unit D %Rec Limits Arsenic 50.0 53.9 mq/Kq 108 80 - 120 Barium 50.0 57.3 80 - 120 mg/Kg 115 Cadmium 50.0 50.0 mg/Kg 100 80 - 120 50.0 Chromium 54.3 mg/Kg 109 80 - 120 Lead 50.0 54.2 mg/Kg 108 80 - 120 Selenium 50.0 51.6 103 80 - 120 mg/Kg

Lab Sample ID: LCSD 580-290025/21-A Client Sample ID: Lab Control Sample Dup

53.6

53.6

mg/Kg

mg/Kg

107

107

80 - 120

50.0

50.0

Matrix: Solid

Silver

Silver

Analysis Batch: 290167 LCSD LCSD **RPD** Spike %Rec. **Analyte** Added Result Qualifier Unit %Rec Limits RPD Limit Arsenic 50.0 53.4 mg/Kg 107 80 - 120 20 Barium 50.0 56.6 80 - 120 20 mg/Kg 113 Cadmium 50.0 49.5 mg/Kg 99 80 - 120 20 50.0 53.8 108 20 Chromium mg/Kg 80 - 120 Lead 50.0 53.8 mg/Kg 108 80 - 120 20 Selenium 50.0 50.4 101 80 - 120 20 mg/Kg

TestAmerica Seattle

Page 22 of 29

80 - 120

QC Sample Results

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge TestAmerica Job ID: 580-82025-1

Method:	7471A -	Mercury	(CVAA)
_			

Lab Sample ID: MB 580-289744/22-A **Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA Analysis Batch: 289777** Prep Batch: 289744 MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.030 <u>11/27/18 12:00</u> <u>11/27/18 15:08</u> Mercury ND mg/Kg

Lab Sample ID: LCS 580-289744/23-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA Prep Batch: 289744 **Analysis Batch: 289777** Spike LCS LCS %Rec. Added Result Qualifier Unit Limits Analyte %Rec 80 - 120 Mercury 0.167 0.169 mg/Kg 101

Lab Sample ID: LCSD 580-289744/24-A **Client Sample ID: Lab Control Sample Dup Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 289777** Prep Batch: 289744 Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier Unit Limits Limit Analyte D %Rec RPD Mercury 0.167 0.171 mg/Kg 103 80 - 120

Lab Chronicle

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge TestAmerica Job ID: 580-82025-1

Lab Sample ID: 580-82025-1

Matrix: Solid

Date Collected: 11/21/18 08:01 Date Received: 11/23/18 10:50

Client Sample ID: SS-01

Batch Batch Dilution Batch Prepared Method Run **Factor** Number or Analyzed **Prep Type** Type Analyst Lab TAL SEA Total/NA Analysis D 2216 289639 11/26/18 13:56 JCM

Client Sample ID: SS-01 Lab Sample ID: 580-82025-1

Date Collected: 11/21/18 08:01

Matrix: Solid

Date Received: 11/23/18 10:50 Percent Solids: 79.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			289674	11/26/18 16:58	ASJ	TAL SEA
Total/NA	Analysis	8260C		1	289687	11/27/18 00:10	ASJ	TAL SEA
Total/NA	Prep	8151A			290141	12/03/18 12:34	BAH	TAL SEA
Total/NA	Analysis	8151A		1	290489	12/06/18 18:01	KFS	TAL SEA
Total/NA	Prep	3546			290094	12/01/18 20:47	BAH	TAL SEA
Total/NA	Analysis	8270C SIM		5	290647	12/10/18 15:41	W1T	TAL SEA
Total/NA	Prep	3546			290263	12/04/18 14:42	BAH	TAL SEA
Total/NA	Analysis	8081A		5	290437	12/06/18 18:15	TL1	TAL SEA
Total/NA	Prep	3546			290263	12/04/18 14:42	BAH	TAL SEA
Total/NA	Analysis	8082A		1	290587	12/06/18 15:33	APR	TAL SEA
Total/NA	Prep	3546			290093	12/01/18 19:40	BAH	TAL SEA
Total/NA	Analysis	NWTPH-Dx		5	290662	12/11/18 02:40	Z1R	TAL SEA
Total/NA	Prep	3050B			290025	11/30/18 11:36	T1H	TAL SEA
Total/NA	Analysis	6010B		1	290167	12/03/18 14:47	HJM	TAL SEA
Total/NA	Prep	7471A			289744	11/27/18 12:00	T1H	TAL SEA
Total/NA	Analysis	7471A		1	289777	11/27/18 16:12	T1H	TAL SEA

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

TestAmerica Seattle

3

0

7

9

10

Accreditation/Certification Summary

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge TestAmerica Job ID: 580-82025-1

Laboratory: TestAmerica Seattle

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska (UST)	State Program	10	17-024	01-19-19
ANAB	DoD ELAP		L2236	01-19-19
ANAB	ISO/IEC 17025		L2236	01-19-19
California	State Program	9	2901	11-05-19
Montana (UST)	State Program	8	N/A	04-30-20
Nevada	State Program	9	WA000502019-1	07-31-19
Oregon	NELAP	10	WA100007	11-05-19
US Fish & Wildlife	Federal		LE058448-0	07-31-19
USDA	Federal		P330-14-00126	02-10-20
Washington	State Program	10	C553	02-17-19

Sample Summary

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge TestAmerica Job ID: 580-82025-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-82025-1	SS-01	Solid	11/21/18 08:01	11/23/18 10:50

9

4

Q

9

10

THE LEADER IN ENVIRONMENTAL TESTING	Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047 www,testamericainc.com	Short Hold	Custody Record
Olient / E_		Date W/21	// S Chain of Custody Number 34968
Address Address Address	Code	Lab Number	Page of
City A ri	Sampler O . L.	Lab Contact Analysis (Attach list if more space is needed)	
Rolling	15.21 Billing Contact	5975) 477	Special Instructions/
Contract/Purchase Order/Quote No.	Matrix	Containers & Preservatives	Conditions of Receipt
Sample I.D. and Location/Description (Containers for each sample may be combined on one line)	Time Air New York Sed.	HOSONH HOSONH NAOH NAOH NAOH NAOH NAOH NAOH NAOH N	
W		XXXXXXX	In Lid Sacium
		580-82025 Chain of Custody	3y
SALE			
5ha 2			
	ntification Cvin Irritant Poison B	Sample Disposal Disposal By Lab	(A fee may be assessed if samples Months are retained longer than 1 month)
Time Required (business days)	Other	3 Requirements (Spe	
Lobays Chodys	glys	1. Received By Signiffrint 2 Backward By Signiffrint	ound()
2. Relinquished By Sign/Print	Date	E.Mooring of Jishim	. Date . Time
3. Relinquished By Sign/Print	Date Time	3. Received By Sign/Print	

DISTRIBUTION: WHITE - Stays with the Samples; CANARY - Returned to Client with Report; PINK - Field Copy

TAL-8274-580 (0210)

magnes II A		•	•	
JestA	M	Or		
10211		IE N		U
		201025(C-00/2869)TATE	6V63V60X6	@GE\$\\$\\$\6
				manana da ka

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Seattle 5755 8th Street E. Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047 www.testamericainc.com

Rush
☑ Short Hold

Chain of Custody Record

Client			Client C	ontact		()									Date \	1/	21 /	10	0	hain o	f Custody I		1000
CES			Y-1	<u> </u>	3514		ene.									i ah N	V / Z lumber	-11	(\d				<u> </u>	<u> 1968</u>
Address 3511 Pacific Blu	1 SW		Telephor [ne Numi >4(ber (Are – 🔉	a Code), 2 ~ (,	-62	imber ! (P	age		of	
City	State Zip Code	, 732(Sampler		· Net			Contact							Analy more	rsis (A space	ttach lis s is need	st if ded)						
Project Name and Location (State)		15-21	Billing Co	ontact	744	~~			·			_		(X	<u>\\</u>	-	y							
Shimanek Covered	Br Lago											_			A.E.	9	7		-			Special		
Contract/Purchase Order/Quote No.	8				Matrix			Pr	ntaine eserva				10	HALLMA	¥ 0 €	1 .	techic					Conditio	ของ ก	εσειρι
Sample I.D. and Location/Description (Containers for each sample may be combined of	on on one line)	Date	Time	Air Aqueous	Sed.	line.	Unpres.	HZS04 HW03	HCI	NaOH	ZnAc/ NaOH	1) 	2	40	0	ュ							
\$5-01		V21 8	301		$ \hspace{.05cm} \hspace{.05cm}\rangle$							X	Y	X	XX	<u> </u>	X				I	nclud	Bal	ium
									_															
																				-	ļ			
																		_	-		-			
						_			-			-						THE REAL PROPERTY.					·	
								-	-			-												
									-					580	 -82025	Cha	in of C	ustod	ШШШ У					
						-		_	-			-		-		1				1	I			***************************************
									-							ļ		-			-			
						-		-	-							-								
				_					+			-			_			 			 			
Cooler	Possible Hazard	Identification				1			Т		Sa	mple	Dispos	sal		Dispo	sal By L	ab			(A fe	e may be	assessed i	f samples
☐ Yes ☐ No Cooler Temp:	☐ Non-Hazard	☐ Flamma	able 🗆	Skin Ir	ritant		Poison L				vn 🗆		rn To C	Client		Archi	re For		M	onths	are	retained lo	iger than	i month)
Turn Around Time Required (business days)		_					1	QC Red	juirem.	nents	(Specif)	<i>(</i>)				u ·	3°(*						
☐ 24 Hours ☐ 48 Hours ☐ 5 Days	☐ 10 Days	☐ 15 Days	☐ Other	r	7			1 0 - 4	ر المستحدد	500											Date	,	, Time	
1. Relinquished By Sign/Print Law Verte Je	ESSILA PEL	rotat	Date	21	Time	102	\rangle	1. Rece		75	venij Pri	ni 		Servery.	<u>Sas</u>	ەلىر	0	<u>"(</u>	ww.	el(3/18	10	50
2. Relinquished by Sign/Print			Date 1\17	3/1	Time 8 1	700	- 2	2. Reće	Lu Lu	By S.	ign/Pyi	6	74	cn	7	lok	165				Date	24.18	Time	30
3. Relinquished By Sign/Print			Date	4	Time			3. Rece	ived I	Ву	ign/Pri	nı									Date		Time	
Comments							L		<u></u>			1.1-	=2	2					***************************************					
												7	- 4	-)										

Login Sample Receipt Checklist

Client: Cascade Earth Sciences Inc. Job Number: 580-82025-1

Login Number: 82025 List Source: TestAmerica Seattle

List Number: 1

Creator: O'Connell, Jason I

Creator. O Connell, Jason I		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

5

9

10

1.

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-81942-1

Client Project/Site: Shimanek Covered Bridge

For:

Cascade Earth Sciences Inc. 3511 Pacific Blvd Sw Albany, Oregon 97321

Attn: Jessica Penetar

Authorized for release by: 12/12/2018 1:02:12 PM

Nathan Lewis, Project Manager I

(253)922-2310

nathan.lewis@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge TestAmerica Job ID: 580-81942-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	5
Client Sample Results	6
QC Sample Results	18
Chronicle	
Certification Summary	33
Sample Summary	34
Chain of Custody	35
Receipt Checklists	37

2

4

5

6

8

9

Case Narrative

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge TestAmerica Job ID: 580-81942-1

Job ID: 580-81942-1

Laboratory: TestAmerica Seattle

Narrative

Job Narrative 580-81942-1

Comments

No additional comments.

Receipt

The samples were received on 11/20/2018 9:45 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.4° C.

GC/MS VOA

Method(s) 5035: The following samples were provided to the laboratory with a significantly different initial weight than that required by the reference method: SS-04 (580-81942-1), SS-05 (580-81942-2) and SS-02 (580-81942-3). The method requires 8-12 grams. The amount provided was above this range.

Method(s) 8260C: The minimum response factor (RF) criteria for the continuing calibration verification (CCV) analyzed in batch 580-289687 was outside criteria for the following analyte(s): Benzene, Vinyl chloride, Dichlorobromomethane and Trichloroethene. As indicated in the reference method, sample analysis may proceed; however, any detection or non-detection for the affected analyte(s) is considered estimated.

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 580-289687 recovered outside acceptance criteria, low biased, for 1,2,3-Trichlorobenzene and Naphthalene. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported.

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 580-289687 recovered above the upper control limit for Bromobenzene and Dichlorodifluoromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method(s) 8260C: The laboratory control sample (LCS) for preparation batch 580-289674 and 580-289674 and analytical batch 580-289687 recovered outside control limits for the following analyte(s): 1,2,3-Trichlorobenzene. 1,2,3-Trichlorobenzene has been identified as a poor performing analyte when analyzed using this method; therefore, re-extraction/re-analysis was not performed. Data have been qualified and reported.

Method(s) 8260C: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 580-289674 and 580-289674 and analytical batch 580-289687 recovered outside control limits for the following analytes: Vinyl chloride, Trichlorofluoromethane and Dichlorodifluoromethane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been qualified and reported.

Method(s) 8260C: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for batch preparation batch 580-289674 and 580-289674 and analytical batch 580-289687 recovered outside control limits for the following analytes: Vinyl chloride and Trichlorofluoromethane.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270C SIM: The surrogate recovery for the blank associated with preparation batch 580-290094 and analytical batch 580-290528 was outside the upper control limits. All samples were within recovery limits, therefore the data is reported

Method(s) 8270C SIM: The following samples were diluted due to the nature of the sample matrix: SS-04 (580-81942-1), SS-05 (580-81942-2) and SS-02 (580-81942-3). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8081A: The %RPD between the primary and confirmation column exceeded 40% for gamma-BHC (Lindane) for the following

4

6

7

8

9

10

Case Narrative

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge TestAmerica Job ID: 580-81942-1

Job ID: 580-81942-1 (Continued)

Laboratory: TestAmerica Seattle (Continued)

samples: SS-04 (580-81942-1) and SS-05 (580-81942-2). The lower value(s) has been reported and qualified in accordance with the laboratory's SOP.

Method(s) 8081A: The continuing calibration verification (CCV) associated with batch 580-290547 recovered outside acceptance criteria, low biased, for Endosulfan II and Endrin aldehyde. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported.

Method(s) 8081A: The continuing calibration verification (CCV) associated with 580-290606 recovered outside the control limits for Chlordane (technical) and Endrin aldehyde on one column. Results are confirmed on both columns and reported from the passing column. The following samples are impacted: SS-02 (580-81942-3) and (CCVIS 580-290606/7).

Method(s) NWTPH-Dx: Continuing calibration verification (CCV) standard associated with batch 580-290662 recovered outside %Drift acceptance criteria for o-Terphenyl surrogate. The %Recovery is within acceptance criteria for the surrogate in the CCV and associated samples; therefore, the data are qualified and reported. The following sample is impacted: (CCVRT 580-290662/3).

Method(s) 8082A: The continuing calibration verification (CCV) associated with 580-290834 recovered low and outside the control limits for PCB-1232 on one column. Results are confirmed on both columns and reported from the passing column. The following samples are impacted: SS-04 (580-81942-1), SS-05 (580-81942-2), SS-02 (580-81942-3) and (CCV 580-290834/3).

Method(s) 8082A: Surrogate recovery for the following sample was outside control limits: SS-02 (580-81942-3). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6010B: The absolute response for Cd was greater than the method reporting limit (RL) in the following sample: (580-82027-A-22-D DU). The instrument raw data has been manually reviewed and the result has been reported as ND.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

2

3

4

5

7

0

9

10

Definitions/Glossary

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge TestAmerica Job ID: 580-81942-1

Qualifiers

GC/MS VOA

* LCS or LCSD is outside acceptance limits.

* RPD of the LCS and LCSD exceeds the control limits

GC/MS Semi VOA

Qualifier Qualifier Description

X Surrogate is outside control limits

GC Semi VOA

X Surrogate is outside control limits

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly	y used abbreviations may	v or may not b	e present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)
MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

9

10

TestAmerica Seattle

12/12/2018

Client Sample Results

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Client Sample ID: SS-04

Date Collected: 11/19/18 11:01

Date Received: 11/20/18 09:45

TestAmerica Job ID: 580-81942-1

Lab Sample ID: 580-81942-1

Matrix: Solid
Percent Solids: 93.4

Method: 8260C - Volatile Org Analyte	Result Q		MDL Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND ND	15 - T	ug/Kg	— ğ	11/26/18 16:00	11/26/18 22:52	Dil Fa
Bromobenzene	ND ND	49	ug/Kg			11/26/18 22:52	
Bromochloromethane	ND ND	20	ug/Kg		11/26/18 16:00		
Bromodichloromethane	ND	30	ug/Kg			11/26/18 22:52	
Bromoform	ND ND	99	ug/Kg		11/26/18 16:00		
Bromomethane	ND ND	99	ug/Kg		11/26/18 16:00		
Carbon tetrachloride	ND	9.9	ug/Kg	· · · · · · · ·		11/26/18 22:52	
Chlorobenzene	ND ND	20	ug/Kg		11/26/18 16:00		
Chloroethane	ND	200	ug/Kg			11/26/18 22:52	
Chloroform	ND	200	ug/Kg			11/26/18 22:52	
Chloromethane	ND ND	49	ug/Kg ug/Kg	~ \$		11/26/18 22:52	
	ND ND		0 0	₩			
2-Chlorotoluene		20	ug/Kg	· · · · · · · · · · · · · · · · · · ·		11/26/18 22:52	
4-Chlorotoluene	ND	20	ug/Kg			11/26/18 22:52	
cis-1,2-Dichloroethene	ND	30	ug/Kg	☆		11/26/18 22:52	
cis-1,3-Dichloropropene	ND	9.9	ug/Kg	% .		11/26/18 22:52	
Dibromochloromethane	ND	20	ug/Kg	₩		11/26/18 22:52	
1,2-Dibromo-3-Chloropropane	ND	120	ug/Kg	₽		11/26/18 22:52	
1,2-Dibromoethane	ND	9.9	ug/Kg	· · · · · · ·		11/26/18 22:52	
Dibromomethane	ND	30	ug/Kg	₽		11/26/18 22:52	
1,3-Dichlorobenzene	ND	30	ug/Kg	₽.		11/26/18 22:52	
1,4-Dichlorobenzene	ND	30	ug/Kg			11/26/18 22:52	
1,2-Dichlorobenzene	ND	20	ug/Kg	₽	11/26/18 16:00	11/26/18 22:52	
Dichlorodifluoromethane	ND *	99	ug/Kg	☼	11/26/18 16:00	11/26/18 22:52	
1,1-Dichloroethane	ND	20	ug/Kg		11/26/18 16:00	11/26/18 22:52	
1,2-Dichloroethane	ND	9.9	ug/Kg	☼	11/26/18 16:00	11/26/18 22:52	
1,1-Dichloroethene	ND	20	ug/Kg	≎	11/26/18 16:00	11/26/18 22:52	
2,2-Dichloropropane	ND	20	ug/Kg	≎	11/26/18 16:00	11/26/18 22:52	
1,2-Dichloropropane	ND	9.9	ug/Kg	₽	11/26/18 16:00	11/26/18 22:52	
1,3-Dichloropropane	ND	30	ug/Kg	₽	11/26/18 16:00	11/26/18 22:52	
1,1-Dichloropropene	ND	20	ug/Kg	₽	11/26/18 16:00	11/26/18 22:52	
Ethylbenzene	ND	20	ug/Kg	₽	11/26/18 16:00	11/26/18 22:52	
Hexachlorobutadiene	ND	74	ug/Kg	₽	11/26/18 16:00	11/26/18 22:52	
Isopropylbenzene	ND	20	ug/Kg	≎	11/26/18 16:00	11/26/18 22:52	
4-Isopropyltoluene	ND	20	ug/Kg	≎	11/26/18 16:00	11/26/18 22:52	
Methylene Chloride	ND	120	ug/Kg	₽	11/26/18 16:00	11/26/18 22:52	
Methyl tert-butyl ether	ND	20	ug/Kg	₽	11/26/18 16:00	11/26/18 22:52	
m-Xylene & p-Xylene	ND	99	ug/Kg	ф.	11/26/18 16:00	11/26/18 22:52	
Naphthalene	ND	49	ug/Kg	≎	11/26/18 16:00	11/26/18 22:52	
n-Butylbenzene	ND	74	ug/Kg	≎	11/26/18 16:00	11/26/18 22:52	
N-Propylbenzene	ND	20	ug/Kg	ф.	11/26/18 16:00	11/26/18 22:52	
o-Xylene	ND	30	ug/Kg	₽	11/26/18 16:00	11/26/18 22:52	
sec-Butylbenzene	ND	20	ug/Kg	☼		11/26/18 22:52	
Styrene	ND	20	ug/Kg			11/26/18 22:52	
t-Butylbenzene	ND	20	ug/Kg	₩		11/26/18 22:52	
1,1,1,2-Tetrachloroethane	ND	20	ug/Kg	₽		11/26/18 22:52	
1,1,2,2-Tetrachloroethane	ND	9.9	ug/Kg			11/26/18 22:52	
Tetrachloroethene	ND	20	ug/Kg	₽		11/26/18 22:52	
Toluene	ND	74	ug/Kg	₩		11/26/18 22:52	
trans-1,2-Dichloroethene	ND	30	ug/Kg			11/26/18 22:52	

TestAmerica Seattle

Page 6 of 37

2

6

8

4 4

12/12/2018

2

TestAmerica Job ID: 580-81942-1

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Client Sample ID: SS-04

Date Collected: 11/19/18 11:01 Date Received: 11/20/18 09:45 Lab Sample ID: 580-81942-1

Matrix: Solid Percent Solids: 93.4

Method: 8260C - Volatile Orga	anic Compounds b	y GC/MS	(Continued)	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND		20		ug/Kg	<u> </u>	11/26/18 16:00	11/26/18 22:52	1
1,2,4-Trichlorobenzene	ND		30		ug/Kg	☼	11/26/18 16:00	11/26/18 22:52	1
1,2,3-Trichlorobenzene	ND	*	74		ug/Kg	₽	11/26/18 16:00	11/26/18 22:52	1
1,1,1-Trichloroethane	ND		20		ug/Kg	☼	11/26/18 16:00	11/26/18 22:52	1
1,1,2-Trichloroethane	ND		9.9		ug/Kg	☼	11/26/18 16:00	11/26/18 22:52	1
Trichloroethene	ND		30		ug/Kg	φ.	11/26/18 16:00	11/26/18 22:52	1
Trichlorofluoromethane	ND	*	99		ug/Kg	₩	11/26/18 16:00	11/26/18 22:52	1
1,2,3-Trichloropropane	ND		20		ug/Kg	☼	11/26/18 16:00	11/26/18 22:52	1
1,3,5-Trimethylbenzene	ND		20		ug/Kg	≎	11/26/18 16:00	11/26/18 22:52	1
1,2,4-Trimethylbenzene	ND		20		ug/Kg	☼	11/26/18 16:00	11/26/18 22:52	1
Vinyl chloride	ND	*	74		ug/Kg	₩	11/26/18 16:00	11/26/18 22:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate %Recovery Qualifier Limits Prepared Analyzed D	
Toluene-d8 (Surr) 106 80 - 120 11/26/18 16:00 11/26/18 22:52	1
4-Bromofluorobenzene (Surr) 99 80 - 120 11/26/18 16:00 11/26/18 22:52	1
Dibromofluoromethane (Surr) 99 80 - 120 11/26/18 16:00 11/26/18 22:52	1
Trifluorotoluene (Surr) 100 80 - 120 11/26/18 16:00 11/26/18 22:52	1
1,2-Dichloroethane-d4 (Surr) 102 80 - 121 11/26/18 16:00 11/26/18 22:52	1

Method: 8151A - Herbicides (GC/MS)

Analyte	Result Qualifier	RL	MDL U	nit	D	Prepared	Analyzed	Dil Fac
Dalapon	ND ND	170	ug	g/Kg	<u> </u>	12/03/18 12:34	12/06/18 16:43	1
Dicamba	ND	94	ug	g/Kg	₩	12/03/18 12:34	12/06/18 16:43	1
Mecoprop	ND	94	ug	g/Kg	₩	12/03/18 12:34	12/06/18 16:43	1
MCPA	ND	94	ug	g/Kg	₩.	12/03/18 12:34	12/06/18 16:43	1
Dichlorprop	ND	94	ug	g/Kg	₩	12/03/18 12:34	12/06/18 16:43	1
2,4-D	ND	94	ug	g/Kg	₩	12/03/18 12:34	12/06/18 16:43	1
Pentachlorophenol	ND	170	ug	g/Kg	₩.	12/03/18 12:34	12/06/18 16:43	1
Silvex (2,4,5-TP)	ND	94	ug	g/Kg	₩	12/03/18 12:34	12/06/18 16:43	1
2,4,5-T	ND	94	ug	g/Kg	☼	12/03/18 12:34	12/06/18 16:43	1
Dinoseb	ND	170	ug	g/Kg	₩.	12/03/18 12:34	12/06/18 16:43	1
2,4-DB	ND	94	นดู	g/Kg	₽	12/03/18 12:34	12/06/18 16:43	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac

2,4-Dichlorophenylacetic acid	71	53 - 150	12/03/18 12:34 12/06/18 16:43	1
<u> </u>				

Method: 8270C SIM -	Semivolatile Org	Janic Compounds	(GC/MS SIM)
---------------------	------------------	-----------------	-------------

Analyte	Result Qualifier	RL	MDL (Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND ND	26	l	ug/Kg	<u> </u>	12/01/18 20:47	12/10/18 16:07	5
2-Methylnaphthalene	ND	26	ι	ug/Kg	₩	12/01/18 20:47	12/10/18 16:07	5
1-Methylnaphthalene	ND	26	ι	ug/Kg	₩	12/01/18 20:47	12/10/18 16:07	5
Acenaphthylene	ND	26	l	ug/Kg	₩	12/01/18 20:47	12/10/18 16:07	5
Acenaphthene	ND	26	ι	ug/Kg	₩	12/01/18 20:47	12/10/18 16:07	5
Fluorene	ND	26	ι	ug/Kg	₩	12/01/18 20:47	12/10/18 16:07	5
Phenanthrene	ND	26	l	ug/Kg	₽	12/01/18 20:47	12/10/18 16:07	5
Anthracene	ND	26	ι	ug/Kg	₩	12/01/18 20:47	12/10/18 16:07	5
Fluoranthene	ND	26	ι	ug/Kg	₩	12/01/18 20:47	12/10/18 16:07	5
Pyrene	ND	26	·	ug/Kg	₽	12/01/18 20:47	12/10/18 16:07	5
Benzo[a]anthracene	ND	26	ι	ug/Kg	₩	12/01/18 20:47	12/10/18 16:07	5
Chrysene	ND	26	ι	ug/Kg	☼	12/01/18 20:47	12/10/18 16:07	5

TestAmerica Seattle

Page 7 of 37

3

_

5

7

9

10

4-

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Client Sample ID: SS-04

Date Collected: 11/19/18 11:01 Date Received: 11/20/18 09:45 Lab Sample ID: 580-81942-1

Matrix: Solid

Percent Solids: 93.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[b]fluoranthene	ND		26		ug/Kg	<u> </u>	12/01/18 20:47	12/10/18 16:07	5
Benzo[k]fluoranthene	ND		26		ug/Kg	φ.	12/01/18 20:47	12/10/18 16:07	5
Benzo[a]pyrene	ND		26		ug/Kg	☼	12/01/18 20:47	12/10/18 16:07	5
Indeno[1,2,3-cd]pyrene	ND		26		ug/Kg		12/01/18 20:47	12/10/18 16:07	5
Dibenz(a,h)anthracene	ND		26		ug/Kg	☼	12/01/18 20:47	12/10/18 16:07	5
Benzo[g,h,i]perylene	ND		26		ug/Kg	≎	12/01/18 20:47	12/10/18 16:07	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14			57 ₋ 120				12/01/18 20:47	12/10/18 16:07	5

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND	3.1		ug/Kg	<u> </u>	12/01/18 18:13	12/09/18 15:42	1
alpha-BHC	ND	2.1		ug/Kg	☼	12/01/18 18:13	12/09/18 15:42	1
beta-BHC	ND	5.1		ug/Kg	☼	12/01/18 18:13	12/09/18 15:42	1
delta-BHC	ND	3.1		ug/Kg	₽	12/01/18 18:13	12/09/18 15:42	1
gamma-BHC (Lindane)	ND	2.1		ug/Kg	☼	12/01/18 18:13	12/09/18 15:42	1
4,4'-DDD	ND	2.1		ug/Kg	☼	12/01/18 18:13	12/09/18 15:42	1
4,4'-DDE	ND	2.1		ug/Kg	₽	12/01/18 18:13	12/09/18 15:42	1
4,4'-DDT	ND	2.1		ug/Kg	☼	12/01/18 18:13	12/09/18 15:42	1
Dieldrin	ND	2.1		ug/Kg	☼	12/01/18 18:13	12/09/18 15:42	1
Endosulfan I	ND	2.1		ug/Kg	₽	12/01/18 18:13	12/09/18 15:42	1
Endosulfan II	ND	2.1		ug/Kg	☼	12/01/18 18:13	12/09/18 15:42	1
Endosulfan sulfate	ND	2.1		ug/Kg	☼	12/01/18 18:13	12/09/18 15:42	1
Endrin	ND	2.1		ug/Kg	₽	12/01/18 18:13	12/09/18 15:42	1
Endrin aldehyde	ND	21		ug/Kg	☼	12/01/18 18:13	12/09/18 15:42	1
Heptachlor	ND	3.1		ug/Kg	☼	12/01/18 18:13	12/09/18 15:42	1
Heptachlor epoxide	ND	3.1		ug/Kg	₽	12/01/18 18:13	12/09/18 15:42	1
Methoxychlor	ND	10		ug/Kg	☼	12/01/18 18:13	12/09/18 15:42	1
Endrin ketone	ND	2.1		ug/Kg	☼	12/01/18 18:13	12/09/18 15:42	1
Toxaphene	ND	100		ug/Kg		12/01/18 18:13	12/09/18 15:42	1
cis-Chlordane	ND	2.1		ug/Kg	☼	12/01/18 18:13	12/09/18 15:42	1
trans-Chlordane	ND	3.1		ug/Kg	₩	12/01/18 18:13	12/09/18 15:42	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	82	50 - 123				12/01/18 18:13	12/09/18 15:42	1
DCB Decachlorobiphenyl	97	43 - 129				12/01/18 18:13	12/09/18 15:42	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.021		mg/Kg	<u> </u>	12/01/18 18:13	12/11/18 15:01	1
PCB-1221	ND		0.021		mg/Kg	₩	12/01/18 18:13	12/11/18 15:01	1
PCB-1232	ND		0.021		mg/Kg	₩	12/01/18 18:13	12/11/18 15:01	1
PCB-1242	ND		0.021		mg/Kg	₩.	12/01/18 18:13	12/11/18 15:01	1
PCB-1248	ND		0.021		mg/Kg	₩	12/01/18 18:13	12/11/18 15:01	1
PCB-1254	ND		0.021		mg/Kg	₩	12/01/18 18:13	12/11/18 15:01	1
PCB-1260	ND		0.021		mg/Kg	\$	12/01/18 18:13	12/11/18 15:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	70		54 - 142				12/01/18 18:13	12/11/18 15:01	1
Tetrachloro-m-xylene	90		58 ₋ 122				12/01/18 18:13	12/11/18 15:01	1

TestAmerica Seattle

Page 8 of 37

Client Sample Results

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge TestAmerica Job ID: 580-81942-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	ND		460		mg/Kg	<u> </u>	12/01/18 19:40	12/11/18 04:28	10
Motor Oil (>C24-C36)	490		460		mg/Kg	₽	12/01/18 19:40	12/11/18 04:28	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	80		50 - 150				12/01/18 19:40	12/11/18 04:28	10
Method: 6010B - Metals (IC	CP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		2.1		mg/Kg	₩	11/26/18 16:43	11/28/18 11:59	-
Barium	55		0.35		mg/Kg	₩	11/26/18 16:43	11/28/18 11:59	
Cadmium	ND		0.70		mg/Kg	₩	11/26/18 16:43	11/28/18 11:59	
Chromium	14		0.91		mg/Kg		11/26/18 16:43	11/28/18 11:59	• • • • • • • •
Lead	20		1.0		mg/Kg	₩	11/26/18 16:43	11/28/18 11:59	
Selenium	ND		3.5		mg/Kg	₩	11/26/18 16:43	11/28/18 11:59	
Silver	ND		1.7		mg/Kg		11/26/18 16:43	11/28/18 11:59	
Method: 7471A - Mercury	(CVAA)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.030		mg/Kg	<u> </u>	11/27/18 12:00	11/27/18 15:50	
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Percent Solids	93.4		0.1		%			11/21/18 14:27	
Percent Moisture	6.6		0.1		%			11/21/18 14:27	

Client Sample Results

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Client Sample ID: SS-05

Date Collected: 11/19/18 11:30

Date Received: 11/20/18 09:45

TestAmerica Job ID: 580-81942-1

Lab Sample ID: 580-81942-2

Percent Solids: 93.6

Matrix: Solid

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil F
Benzene	ND	19	ug/Kg	**		11/26/18 23:18	
Bromobenzene	ND	62	ug/Kg	∵		11/26/18 23:18	
Bromochloromethane	ND	25	ug/Kg			11/26/18 23:18	
Bromodichloromethane	ND	37	ug/Kg	*		11/26/18 23:18	
Bromoform	ND	120	ug/Kg	*		11/26/18 23:18	
Bromomethane	ND	120	ug/Kg			11/26/18 23:18	
Carbon tetrachloride	ND	12	ug/Kg	*		11/26/18 23:18	
Chlorobenzene	ND	25	ug/Kg	₩	11/26/18 16:00	11/26/18 23:18	
Chloroethane	ND	250	ug/Kg		11/26/18 16:00	11/26/18 23:18	
Chloroform	ND	25	ug/Kg	₩	11/26/18 16:00	11/26/18 23:18	
Chloromethane	ND	62	ug/Kg	₩	11/26/18 16:00	11/26/18 23:18	
2-Chlorotoluene	ND	25	ug/Kg	☼	11/26/18 16:00	11/26/18 23:18	
4-Chlorotoluene	ND	25	ug/Kg	₽	11/26/18 16:00	11/26/18 23:18	
cis-1,2-Dichloroethene	ND	37	ug/Kg	☼	11/26/18 16:00	11/26/18 23:18	
cis-1,3-Dichloropropene	ND	12	ug/Kg	☼	11/26/18 16:00	11/26/18 23:18	
Dibromochloromethane	ND	25	ug/Kg	₽	11/26/18 16:00	11/26/18 23:18	
1,2-Dibromo-3-Chloropropane	ND	160	ug/Kg	☼	11/26/18 16:00	11/26/18 23:18	
1,2-Dibromoethane	ND	12	ug/Kg	☼	11/26/18 16:00	11/26/18 23:18	
Dibromomethane	ND	37	ug/Kg	ф.	11/26/18 16:00	11/26/18 23:18	
1,3-Dichlorobenzene	ND	37	ug/Kg	☼	11/26/18 16:00	11/26/18 23:18	
1,4-Dichlorobenzene	ND	37	ug/Kg	☼	11/26/18 16:00	11/26/18 23:18	
1,2-Dichlorobenzene	ND	25	ug/Kg		11/26/18 16:00	11/26/18 23:18	
Dichlorodifluoromethane	ND *	120	ug/Kg	☼	11/26/18 16:00	11/26/18 23:18	
1,1-Dichloroethane	ND	25	ug/Kg	☼	11/26/18 16:00	11/26/18 23:18	
1,2-Dichloroethane	ND	12	ug/Kg	φ.	11/26/18 16:00	11/26/18 23:18	
1,1-Dichloroethene	ND	25	ug/Kg	₩	11/26/18 16:00	11/26/18 23:18	
2,2-Dichloropropane	ND	25	ug/Kg	₩		11/26/18 23:18	
1,2-Dichloropropane	ND	12	ug/Kg			11/26/18 23:18	
1,3-Dichloropropane	ND	37	ug/Kg	☼		11/26/18 23:18	
1,1-Dichloropropene	ND	25	ug/Kg	☆		11/26/18 23:18	
Ethylbenzene	ND	25	ug/Kg			11/26/18 23:18	
Hexachlorobutadiene	ND	94	ug/Kg	☼		11/26/18 23:18	
sopropylbenzene	ND	25	ug/Kg	☼		11/26/18 23:18	
4-Isopropyltoluene	ND	25	ug/Kg			11/26/18 23:18	
Methylene Chloride	ND	160	ug/Kg	₽		11/26/18 23:18	
Methyl tert-butyl ether	ND	25	ug/Kg	ά		11/26/18 23:18	
n-Xylene & p-Xylene	ND	120	ug/Kg			11/26/18 23:18	
Naphthalene	ND	62	ug/Kg	☆		11/26/18 23:18	
n-Butylbenzene	ND	94	ug/Kg	☼		11/26/18 23:18	
N-Propylbenzene	ND	25	ug/Kg			11/26/18 23:18	
o-Xylene	ND ND	37	ug/Kg	≎		11/26/18 23:18	
sec-Butylbenzene	ND ND	37 25		₩		11/26/18 23:18	
			ug/Kg	· · · · · · · · · · · · · · · · · · ·			
Styrene	ND ND	25 25	ug/Kg			11/26/18 23:18	
i-Butylbenzene	ND	25	ug/Kg	₩ **		11/26/18 23:18	
1,1,1,2-Tetrachloroethane	ND	25	ug/Kg			11/26/18 23:18	
1,1,2,2-Tetrachloroethane	ND	12	ug/Kg	₩		11/26/18 23:18	
Tetrachloroethene	ND	25	ug/Kg	φ.		11/26/18 23:18	
Toluene	ND	94	ug/Kg	Đ.	11/26/18 16:00	11/26/18 23:18	

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Client Sample ID: SS-05 Lab Sample ID: 580-81942-2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND		25		ug/Kg	<u> </u>	11/26/18 16:00	11/26/18 23:18	1
1,2,4-Trichlorobenzene	ND		37		ug/Kg	☼	11/26/18 16:00	11/26/18 23:18	1
1,2,3-Trichlorobenzene	ND	*	94		ug/Kg	₽	11/26/18 16:00	11/26/18 23:18	1
1,1,1-Trichloroethane	ND		25		ug/Kg	₩	11/26/18 16:00	11/26/18 23:18	1
1,1,2-Trichloroethane	ND		12		ug/Kg	₩	11/26/18 16:00	11/26/18 23:18	1
Trichloroethene	ND		37		ug/Kg	₽	11/26/18 16:00	11/26/18 23:18	1
Trichlorofluoromethane	ND	*	120		ug/Kg	₩	11/26/18 16:00	11/26/18 23:18	1
1,2,3-Trichloropropane	ND		25		ug/Kg	☼	11/26/18 16:00	11/26/18 23:18	1
1,3,5-Trimethylbenzene	ND		25		ug/Kg	₽	11/26/18 16:00	11/26/18 23:18	1
1,2,4-Trimethylbenzene	ND		25		ug/Kg	☼	11/26/18 16:00	11/26/18 23:18	1
Vinyl chloride	ND	*	94		ug/Kg	₩	11/26/18 16:00	11/26/18 23:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	105		80 - 120				11/26/18 16:00	11/26/18 23:18	1
4-Bromofluorobenzene (Surr)	98		80 - 120				11/26/18 16:00	11/26/18 23:18	1
Dibromofluoromethane (Surr)	99		80 - 120				11/26/18 16:00	11/26/18 23:18	1
Trifluorotoluene (Surr)	101		80 - 120				11/26/18 16:00	11/26/18 23:18	1
1,2-Dichloroethane-d4 (Surr)	102		80 - 121				11/26/18 16:00	11/26/18 23:18	1

Method: 8151A - Herbicide: Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dalapon	ND		150		ug/Kg	<u> </u>	12/03/18 12:34	12/06/18 17:09	1
Dicamba	ND		86		ug/Kg	☼	12/03/18 12:34	12/06/18 17:09	1
Mecoprop	ND		86		ug/Kg	₩	12/03/18 12:34	12/06/18 17:09	1
MCPA	ND		86		ug/Kg	₩	12/03/18 12:34	12/06/18 17:09	1
Dichlorprop	ND		86		ug/Kg	₩	12/03/18 12:34	12/06/18 17:09	1
2,4-D	ND		86		ug/Kg	☼	12/03/18 12:34	12/06/18 17:09	1
Pentachlorophenol	ND		150		ug/Kg	₽	12/03/18 12:34	12/06/18 17:09	1
Silvex (2,4,5-TP)	ND		86		ug/Kg	☼	12/03/18 12:34	12/06/18 17:09	1
2,4,5-T	ND		86		ug/Kg	☼	12/03/18 12:34	12/06/18 17:09	1
Dinoseb	ND		150		ug/Kg	₩	12/03/18 12:34	12/06/18 17:09	1
2,4-DB	ND		86		ug/Kg	≎	12/03/18 12:34	12/06/18 17:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	74		53 - 150				12/03/18 12:34	12/06/18 17:09	1

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		50		ug/Kg	₩	12/01/18 20:47	12/10/18 16:33	10
2-Methylnaphthalene	ND		50		ug/Kg	₩	12/01/18 20:47	12/10/18 16:33	10
1-Methylnaphthalene	ND		50		ug/Kg	☼	12/01/18 20:47	12/10/18 16:33	10
Acenaphthylene	ND		50		ug/Kg	₩	12/01/18 20:47	12/10/18 16:33	10
Acenaphthene	ND		50		ug/Kg	☼	12/01/18 20:47	12/10/18 16:33	10
Fluorene	ND		50		ug/Kg	☼	12/01/18 20:47	12/10/18 16:33	10
Phenanthrene	ND		50		ug/Kg	₩.	12/01/18 20:47	12/10/18 16:33	10
Anthracene	ND		50		ug/Kg	☼	12/01/18 20:47	12/10/18 16:33	10
Fluoranthene	ND		50		ug/Kg	☼	12/01/18 20:47	12/10/18 16:33	10
Pyrene	ND		50		ug/Kg		12/01/18 20:47	12/10/18 16:33	10
Benzo[a]anthracene	ND		50		ug/Kg	☼	12/01/18 20:47	12/10/18 16:33	10
Chrysene	ND		50		ug/Kg	≎	12/01/18 20:47	12/10/18 16:33	10

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Client Sample ID: SS-05 Lab Sample ID: 580-81942-2

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[b]fluoranthene	ND ND		50		ug/Kg	<u> </u>	12/01/18 20:47	12/10/18 16:33	10
Benzo[k]fluoranthene	ND		50		ug/Kg	φ.	12/01/18 20:47	12/10/18 16:33	10
Benzo[a]pyrene	ND		50		ug/Kg	₩	12/01/18 20:47	12/10/18 16:33	10
Indeno[1,2,3-cd]pyrene	ND		50		ug/Kg	φ.	12/01/18 20:47	12/10/18 16:33	10
Dibenz(a,h)anthracene	ND		50		ug/Kg	₩	12/01/18 20:47	12/10/18 16:33	10
Benzo[g,h,i]perylene	ND		50		ug/Kg	₩	12/01/18 20:47	12/10/18 16:33	10
Surrogate	%Recovery (Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	106		57 - 120				12/01/18 20:47	12/10/18 16:33	10

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND ND		3.0		ug/Kg	<u> </u>	12/01/18 18:13	12/09/18 16:00	1
alpha-BHC	ND		2.0		ug/Kg	₩	12/01/18 18:13	12/09/18 16:00	1
beta-BHC	ND		5.1		ug/Kg	☼	12/01/18 18:13	12/09/18 16:00	1
delta-BHC	ND		3.0		ug/Kg	₽	12/01/18 18:13	12/09/18 16:00	1
gamma-BHC (Lindane)	ND		2.0		ug/Kg	☼	12/01/18 18:13	12/09/18 16:00	1
4,4'-DDD	ND		2.0		ug/Kg	₩	12/01/18 18:13	12/09/18 16:00	1
4,4'-DDE	ND		2.0		ug/Kg	\$	12/01/18 18:13	12/09/18 16:00	1
4,4'-DDT	ND		2.0		ug/Kg	₩	12/01/18 18:13	12/09/18 16:00	1
Dieldrin	ND		2.0		ug/Kg	₩	12/01/18 18:13	12/09/18 16:00	1
Endosulfan I	ND		2.0		ug/Kg	₩	12/01/18 18:13	12/09/18 16:00	1
Endosulfan II	ND		2.0		ug/Kg	₩	12/01/18 18:13	12/09/18 16:00	1
Endosulfan sulfate	ND		2.0		ug/Kg	☼	12/01/18 18:13	12/09/18 16:00	1
Endrin	ND		2.0		ug/Kg	≎	12/01/18 18:13	12/09/18 16:00	1
Endrin aldehyde	ND		20		ug/Kg	☼	12/01/18 18:13	12/09/18 16:00	1
Heptachlor	ND		3.0		ug/Kg	≎	12/01/18 18:13	12/09/18 16:00	1
Heptachlor epoxide	ND		3.0		ug/Kg	≎	12/01/18 18:13	12/09/18 16:00	1
Methoxychlor	ND		10		ug/Kg	☼	12/01/18 18:13	12/09/18 16:00	1
Endrin ketone	ND		2.0		ug/Kg	₩	12/01/18 18:13	12/09/18 16:00	1
Toxaphene	ND		100		ug/Kg	☼	12/01/18 18:13	12/09/18 16:00	1
cis-Chlordane	ND		2.0		ug/Kg	₩	12/01/18 18:13	12/09/18 16:00	1
trans-Chlordane	ND		3.0		ug/Kg	☼	12/01/18 18:13	12/09/18 16:00	1
Surrogate	%Recovery (Qualifier Limit	ts				Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene	70	50 - 1	23				12/01/18 18:13	12/09/18 16:00	1
DCB Decachlorobiphenyl	85	43 - 1	29				12/01/18 18:13	12/09/18 16:00	1

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.020		mg/Kg	<u> </u>	12/01/18 18:13	12/11/18 15:54	1
PCB-1221	ND		0.020		mg/Kg	₩	12/01/18 18:13	12/11/18 15:54	1
PCB-1232	ND		0.020		mg/Kg	₩	12/01/18 18:13	12/11/18 15:54	1
PCB-1242	ND		0.020		mg/Kg	ф	12/01/18 18:13	12/11/18 15:54	1
PCB-1248	ND		0.020		mg/Kg	₩	12/01/18 18:13	12/11/18 15:54	1
PCB-1254	ND		0.020		mg/Kg	₩	12/01/18 18:13	12/11/18 15:54	1
PCB-1260	ND		0.020		mg/Kg	₩	12/01/18 18:13	12/11/18 15:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	63		54 - 142				12/01/18 18:13	12/11/18 15:54	1
Tetrachloro-m-xylene	85		58 - 122				12/01/18 18:13	12/11/18 15:54	1

Client Sample Results

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge TestAmerica Job ID: 580-81942-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	ND		980		mg/Kg	<u> </u>	12/01/18 19:40	12/11/18 04:50	20
Motor Oil (>C24-C36)	2000		980		mg/Kg	₽	12/01/18 19:40	12/11/18 04:50	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	101		50 - 150				12/01/18 19:40	12/11/18 04:50	20
Method: 6010B - Metals (ICP)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.3		2.1		mg/Kg	<u> </u>	11/26/18 16:43	11/28/18 12:02	1
Barium	68		0.34		mg/Kg	☼	11/26/18 16:43	11/28/18 12:02	1
Cadmium	ND		0.69		mg/Kg	☼	11/26/18 16:43	11/28/18 12:02	1
Chromium	14		0.90		mg/Kg	₽	11/26/18 16:43	11/28/18 12:02	1
Lead	15		1.0		mg/Kg	☼	11/26/18 16:43	11/28/18 12:02	1
Selenium	ND		3.4		mg/Kg	₩	11/26/18 16:43	11/28/18 12:02	1
Silver	ND		1.7		mg/Kg	₽	11/26/18 16:43	11/28/18 12:02	1
Method: 7471A - Mercury	(CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.029		mg/Kg	-	11/27/18 12:00	11/27/18 15:53	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	93.6		0.1		%			11/21/18 14:27	1
Percent Moisture	6.4		0.1		%			11/21/18 14:27	1

5

7

8

10

Client Sample Results

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Client Sample ID: SS-02

Date Collected: 11/19/18 14:05

Date Received: 11/20/18 09:45

TestAmerica Job ID: 580-81942-1

Lab Sample ID: 580-81942-3

Matrix: Solid

matrix out a	
Percent Solids: 91.6	

Method: 8260C - Volatile Org Analyte	Result Q		MDL Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND ND	16 —	ug/Kg	— ğ	11/26/18 16:58		- 111
Bromobenzene	ND	55	ug/Kg	₽		11/26/18 23:44	
Bromochloromethane	ND	22	ug/Kg ug/Kg			11/26/18 23:44	
Bromodichloromethane	ND	33				11/26/18 23:44	
	ND ND	33 110	ug/Kg	≎			
Bromoform			ug/Kg			11/26/18 23:44	
Bromomethane	ND	110	ug/Kg	_.		11/26/18 23:44	
Carbon tetrachloride	ND	11	ug/Kg	☆		11/26/18 23:44	
Chlorobenzene	ND	22	ug/Kg	₩.		11/26/18 23:44	
Chloroethane	ND	220	ug/Kg			11/26/18 23:44	
Chloroform	ND	22	ug/Kg	☆		11/26/18 23:44	
Chloromethane	ND	55	ug/Kg	₽		11/26/18 23:44	
2-Chlorotoluene	ND	22	ug/Kg		11/26/18 16:58	11/26/18 23:44	
4-Chlorotoluene	ND	22	ug/Kg	₩	11/26/18 16:58	11/26/18 23:44	
cis-1,2-Dichloroethene	ND	33	ug/Kg	☼	11/26/18 16:58	11/26/18 23:44	
cis-1,3-Dichloropropene	ND	11	ug/Kg		11/26/18 16:58	11/26/18 23:44	
Dibromochloromethane	ND	22	ug/Kg	₩	11/26/18 16:58	11/26/18 23:44	
1,2-Dibromo-3-Chloropropane	ND	140	ug/Kg	₩	11/26/18 16:58	11/26/18 23:44	
1,2-Dibromoethane	ND	11	ug/Kg	₩	11/26/18 16:58	11/26/18 23:44	
Dibromomethane	ND	33	ug/Kg	₽	11/26/18 16:58	11/26/18 23:44	
1,3-Dichlorobenzene	ND	33	ug/Kg	₩	11/26/18 16:58	11/26/18 23:44	
1,4-Dichlorobenzene	ND	33	ug/Kg	☼	11/26/18 16:58	11/26/18 23:44	
1,2-Dichlorobenzene	ND	22	ug/Kg		11/26/18 16:58	11/26/18 23:44	
Dichlorodifluoromethane	ND *	110	ug/Kg	☼	11/26/18 16:58	11/26/18 23:44	
1,1-Dichloroethane	ND	22	ug/Kg	☼	11/26/18 16:58	11/26/18 23:44	
1,2-Dichloroethane	ND	11	ug/Kg		11/26/18 16:58	11/26/18 23:44	
1,1-Dichloroethene	ND	22	ug/Kg	₩	11/26/18 16:58	11/26/18 23:44	
2,2-Dichloropropane	ND	22	ug/Kg	≎	11/26/18 16:58	11/26/18 23:44	
1,2-Dichloropropane	ND	11	ug/Kg		11/26/18 16:58	11/26/18 23:44	
1,3-Dichloropropane	ND	33	ug/Kg	☼	11/26/18 16:58	11/26/18 23:44	
1,1-Dichloropropene	ND	22	ug/Kg	₽	11/26/18 16:58	11/26/18 23:44	
Ethylbenzene	ND	22	ug/Kg		11/26/18 16:58	11/26/18 23:44	
Hexachlorobutadiene	ND	82	ug/Kg	₽	11/26/18 16:58	11/26/18 23:44	
sopropylbenzene	36	22	ug/Kg	₩		11/26/18 23:44	
4-Isopropyltoluene	110	22	ug/Kg			11/26/18 23:44	
Methylene Chloride	ND	140	ug/Kg	₽		11/26/18 23:44	
Methyl tert-butyl ether	ND	22	ug/Kg	₽		11/26/18 23:44	
m-Xylene & p-Xylene	ND	110				11/26/18 23:44	
• •	ND	55	ug/Kg	₽		11/26/18 23:44	
Naphthalene			ug/Kg	₩			
n-Butylbenzene	88	82	ug/Kg			11/26/18 23:44 11/26/18 23:44	
N-Propylbenzene	45 ND	22	ug/Kg	₩ ₩			
o-Xylene	ND	33	ug/Kg	₩		11/26/18 23:44	
sec-Butylbenzene	140	22	ug/Kg	. .		11/26/18 23:44	
Styrene	ND	22	ug/Kg	☆		11/26/18 23:44	
t-Butylbenzene	38	22	ug/Kg	₩.		11/26/18 23:44	
1,1,1,2-Tetrachloroethane	ND	22	ug/Kg			11/26/18 23:44	
1,1,2,2-Tetrachloroethane	ND	11	ug/Kg	‡		11/26/18 23:44	
Tetrachloroethene	ND	22	ug/Kg	☼		11/26/18 23:44	
Toluene	ND	82	ug/Kg	₩	11/26/18 16:58	11/26/18 23:44	
trans-1,2-Dichloroethene	ND	33	ug/Kg	₽	11/26/18 16:58	11/26/18 23:44	

TestAmerica Seattle

12/12/2018

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Client Sample ID: SS-02 Lab Sample ID: 580-81942-3

Date Collected: 11/19/18 14:05

Date Received: 11/20/18 09:45

Matrix: Solid
Percent Solids: 91.6

Method: 8260C - Volatile Or	ganic Compo	unds by G	C/MS (Contin	iued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND		22		ug/Kg	<u>₩</u>	11/26/18 16:58	11/26/18 23:44	1
1,2,4-Trichlorobenzene	ND		33		ug/Kg	☼	11/26/18 16:58	11/26/18 23:44	1
1,2,3-Trichlorobenzene	ND	*	82		ug/Kg	₽	11/26/18 16:58	11/26/18 23:44	1
1,1,1-Trichloroethane	ND		22		ug/Kg	₽	11/26/18 16:58	11/26/18 23:44	1
1,1,2-Trichloroethane	ND		11		ug/Kg	₩	11/26/18 16:58	11/26/18 23:44	1
Trichloroethene	ND		33		ug/Kg	₽	11/26/18 16:58	11/26/18 23:44	1
Trichlorofluoromethane	ND	*	110		ug/Kg	₩	11/26/18 16:58	11/26/18 23:44	1
1,2,3-Trichloropropane	ND		22		ug/Kg	₽	11/26/18 16:58	11/26/18 23:44	1
1,3,5-Trimethylbenzene	210		22		ug/Kg	₽	11/26/18 16:58	11/26/18 23:44	1
1,2,4-Trimethylbenzene	420		22		ug/Kg	₩	11/26/18 16:58	11/26/18 23:44	1
Vinyl chloride	ND	*	82		ug/Kg	₩	11/26/18 16:58	11/26/18 23:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		80 - 120				11/26/18 16:58	11/26/18 23:44	1
4-Bromofluorobenzene (Surr)	106		80 - 120				11/26/18 16:58	11/26/18 23:44	1
Dibromofluoromethane (Surr)	99		80 - 120				11/26/18 16:58	11/26/18 23:44	1
Trifluorotoluene (Surr)	101		80 - 120				11/26/18 16:58	11/26/18 23:44	1
1,2-Dichloroethane-d4 (Surr)	99		80 - 121				11/26/18 16:58	11/26/18 23:44	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dalapon	ND		170		ug/Kg	-	12/03/18 12:34	12/06/18 17:35	1
Dicamba	ND		95		ug/Kg	☼	12/03/18 12:34	12/06/18 17:35	1
Mecoprop	ND		95		ug/Kg	☼	12/03/18 12:34	12/06/18 17:35	1
MCPA	ND		95		ug/Kg	₽	12/03/18 12:34	12/06/18 17:35	1
Dichlorprop	ND		95		ug/Kg	₩	12/03/18 12:34	12/06/18 17:35	1
2,4-D	ND		95		ug/Kg	☼	12/03/18 12:34	12/06/18 17:35	1
Pentachlorophenol	ND		170		ug/Kg	₽	12/03/18 12:34	12/06/18 17:35	1
Silvex (2,4,5-TP)	ND		95		ug/Kg	₩	12/03/18 12:34	12/06/18 17:35	1
2,4,5-T	ND		95		ug/Kg	☼	12/03/18 12:34	12/06/18 17:35	1
Dinoseb	ND		170		ug/Kg	₩	12/03/18 12:34	12/06/18 17:35	1
2,4-DB	ND		95		ug/Kg	₩	12/03/18 12:34	12/06/18 17:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	66		53 - 150				12/03/18 12:34	12/06/18 17:35	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	110	48		ug/Kg	₩	12/01/18 20:47	12/10/18 16:59	10
2-Methylnaphthalene	770	48		ug/Kg	₩	12/01/18 20:47	12/10/18 16:59	10
1-Methylnaphthalene	630	48		ug/Kg	☼	12/01/18 20:47	12/10/18 16:59	10
Acenaphthylene	ND	48		ug/Kg	₽	12/01/18 20:47	12/10/18 16:59	10
Acenaphthene	95	48		ug/Kg	☼	12/01/18 20:47	12/10/18 16:59	10
Fluorene	170	48		ug/Kg	₩	12/01/18 20:47	12/10/18 16:59	10
Phenanthrene	550	48		ug/Kg	₽	12/01/18 20:47	12/10/18 16:59	10
Anthracene	180	48		ug/Kg	☼	12/01/18 20:47	12/10/18 16:59	10
Fluoranthene	57	48		ug/Kg	☼	12/01/18 20:47	12/10/18 16:59	10
Pyrene	200	48		ug/Kg	*	12/01/18 20:47	12/10/18 16:59	10
Benzo[a]anthracene	110	48		ug/Kg	☼	12/01/18 20:47	12/10/18 16:59	10
Chrysene	260	48		ug/Kg	☆	12/01/18 20:47	12/10/18 16:59	10

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Client Sample ID: SS-02 Lab Sample ID: 580-81942-3

Date Collected: 11/19/18 14:05

Date Received: 11/20/18 09:45

Matrix: Solid
Percent Solids: 91.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[b]fluoranthene	ND		48		ug/Kg	<u> </u>	12/01/18 20:47	12/10/18 16:59	10
Benzo[k]fluoranthene	ND		48		ug/Kg	₽	12/01/18 20:47	12/10/18 16:59	10
Benzo[a]pyrene	72		48		ug/Kg	₩	12/01/18 20:47	12/10/18 16:59	10
Indeno[1,2,3-cd]pyrene	ND		48		ug/Kg	₽	12/01/18 20:47	12/10/18 16:59	10
Dibenz(a,h)anthracene	ND		48		ug/Kg	☼	12/01/18 20:47	12/10/18 16:59	10
Benzo[g,h,i]perylene	65		48		ug/Kg	₩	12/01/18 20:47	12/10/18 16:59	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	105		57 ₋ 120				12/01/18 20:47	12/10/18 16:59	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		30		ug/Kg	<u> </u>	12/01/18 18:13	12/09/18 16:18	10
alpha-BHC	ND		20		ug/Kg	☼	12/01/18 18:13	12/09/18 16:18	10
beta-BHC	ND		51		ug/Kg	☼	12/01/18 18:13	12/09/18 16:18	10
delta-BHC	ND		30		ug/Kg	₽	12/01/18 18:13	12/09/18 16:18	10
gamma-BHC (Lindane)	ND		20		ug/Kg	☼	12/01/18 18:13	12/09/18 16:18	10
4,4'-DDD	ND		20		ug/Kg	☼	12/01/18 18:13	12/09/18 16:18	10
4,4'-DDE	ND		20		ug/Kg	₽	12/01/18 18:13	12/09/18 16:18	10
4,4'-DDT	ND		20		ug/Kg	☼	12/01/18 18:13	12/09/18 16:18	10
Dieldrin	ND		20		ug/Kg	☼	12/01/18 18:13	12/09/18 16:18	10
Endosulfan I	ND		20		ug/Kg	₽	12/01/18 18:13	12/09/18 16:18	10
Endosulfan II	ND		20		ug/Kg	☼	12/01/18 18:13	12/09/18 16:18	10
Endosulfan sulfate	ND		20		ug/Kg	₩	12/01/18 18:13	12/09/18 16:18	10
Endrin	ND		20		ug/Kg	₽	12/01/18 18:13	12/09/18 16:18	10
Endrin aldehyde	ND		200		ug/Kg	☼	12/01/18 18:13	12/09/18 16:18	10
Heptachlor	ND		30		ug/Kg	☼	12/01/18 18:13	12/09/18 16:18	10
Heptachlor epoxide	ND		30		ug/Kg		12/01/18 18:13	12/09/18 16:18	10
Methoxychlor	ND		100		ug/Kg	☼	12/01/18 18:13	12/09/18 16:18	10
Endrin ketone	ND		20		ug/Kg	₩	12/01/18 18:13	12/09/18 16:18	10
Toxaphene	ND		1000		ug/Kg	₽	12/01/18 18:13	12/09/18 16:18	10
cis-Chlordane	ND		20		ug/Kg	☼	12/01/18 18:13	12/09/18 16:18	10
trans-Chlordane	ND		30		ug/Kg	₩	12/01/18 18:13	12/09/18 16:18	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	55		50 - 123				12/01/18 18:13	12/09/18 16:18	10
DCB Decachlorobiphenyl	117		43 - 129				12/01/18 18:13	12/09/18 16:18	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.020		mg/Kg	<u> </u>	12/01/18 18:13	12/11/18 16:12	1
PCB-1221	ND		0.020		mg/Kg	₩	12/01/18 18:13	12/11/18 16:12	1
PCB-1232	ND		0.020		mg/Kg	₩	12/01/18 18:13	12/11/18 16:12	1
PCB-1242	ND		0.020		mg/Kg	₩.	12/01/18 18:13	12/11/18 16:12	1
PCB-1248	ND		0.020		mg/Kg	₩	12/01/18 18:13	12/11/18 16:12	1
PCB-1254	ND		0.020		mg/Kg	₩	12/01/18 18:13	12/11/18 16:12	1
PCB-1260	ND		0.020		mg/Kg	₩	12/01/18 18:13	12/11/18 16:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	53	X	54 - 142				12/01/18 18:13	12/11/18 16:12	1
Tetrachloro-m-xylene	66		58 - 122				12/01/18 18:13	12/11/18 16:12	1

Client Sample Results

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge TestAmerica Job ID: 580-81942-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	ND		1000		mg/Kg	<u>₩</u>	12/01/18 19:40	12/11/18 05:11	20
Motor Oil (>C24-C36)	3000		1000		mg/Kg	≎	12/01/18 19:40	12/11/18 05:11	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	84		50 - 150				12/01/18 19:40	12/11/18 05:11	20
Method: 6010B - Metals (ICI	?)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		2.2		mg/Kg	<u> </u>	11/30/18 09:57	12/03/18 12:36	1
Barium	62		0.36		mg/Kg	₩	11/30/18 09:57	12/03/18 12:36	1
Cadmium	ND		0.73		mg/Kg	☼	11/30/18 09:57	12/03/18 12:36	1
Chromium	8.4		0.95		mg/Kg		11/30/18 09:57	12/03/18 12:36	1
Lead	18		1.1		mg/Kg	☼	11/30/18 09:57	12/03/18 12:36	1
Selenium	ND		3.6		mg/Kg	₩	11/30/18 09:57	12/03/18 12:36	1
Silver	ND		1.8		mg/Kg	₽	11/30/18 09:57	12/03/18 12:36	1
Method: 7471A - Mercury (C	CVAA)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.020		mg/Kg	<u> </u>	11/27/18 12:00	11/27/18 15:55	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	91.6		0.1		%			11/21/18 14:27	1
Percent Moisture	8.4		0.1		%			11/21/18 14:27	1

4

5

7

8

10

44

12/12/2018

QC Sample Results

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge TestAmerica Job ID: 580-81942-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 580-289674/1-A

Matrix: Solid

Client Sample ID: Method Blank **Prep Type: Total/NA**

Analysis Batch: 289687							Prep Batch:	
		MB			_			
Analyte		Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		30	ug/Kg		11/26/18 16:00		1
Bromobenzene	ND		100	ug/Kg			11/26/18 18:58	1
Bromochloromethane	ND		40	ug/Kg			11/26/18 18:58	1
Bromodichloromethane	ND		60	ug/Kg		11/26/18 16:00	11/26/18 18:58	1
Bromoform	ND		200	ug/Kg			11/26/18 18:58	1
Bromomethane	ND		200	ug/Kg		11/26/18 16:00	11/26/18 18:58	1
Carbon tetrachloride	ND		20	ug/Kg		11/26/18 16:00	11/26/18 18:58	1
Chlorobenzene	ND		40	ug/Kg		11/26/18 16:00	11/26/18 18:58	1
Chloroethane	ND		400	ug/Kg		11/26/18 16:00	11/26/18 18:58	1
Chloroform	ND		40	ug/Kg		11/26/18 16:00	11/26/18 18:58	1
Chloromethane	ND		100	ug/Kg		11/26/18 16:00	11/26/18 18:58	1
2-Chlorotoluene	ND		40	ug/Kg		11/26/18 16:00	11/26/18 18:58	1
4-Chlorotoluene	ND		40	ug/Kg		11/26/18 16:00	11/26/18 18:58	1
cis-1,2-Dichloroethene	ND		60	ug/Kg		11/26/18 16:00	11/26/18 18:58	1
cis-1,3-Dichloropropene	ND		20	ug/Kg		11/26/18 16:00	11/26/18 18:58	1
Dibromochloromethane	ND		40	ug/Kg		11/26/18 16:00	11/26/18 18:58	1
1,2-Dibromo-3-Chloropropane	ND		250	ug/Kg		11/26/18 16:00	11/26/18 18:58	1
1,2-Dibromoethane	ND		20	ug/Kg		11/26/18 16:00	11/26/18 18:58	1
Dibromomethane	ND		60	ug/Kg		11/26/18 16:00	11/26/18 18:58	1
1,3-Dichlorobenzene	ND		60	ug/Kg		11/26/18 16:00	11/26/18 18:58	1
1,4-Dichlorobenzene	ND		60	ug/Kg			11/26/18 18:58	1
1,2-Dichlorobenzene	ND		40	ug/Kg			11/26/18 18:58	1
Dichlorodifluoromethane	ND		200	ug/Kg			11/26/18 18:58	1
1,1-Dichloroethane	ND		40	ug/Kg			11/26/18 18:58	1
1,2-Dichloroethane	ND		20	ug/Kg			11/26/18 18:58	1
1,1-Dichloroethene	ND		40	ug/Kg			11/26/18 18:58	1
2,2-Dichloropropane	ND		40	ug/Kg			11/26/18 18:58	1
1,2-Dichloropropane	ND		20	ug/Kg			11/26/18 18:58	
1,3-Dichloropropane	ND		60	ug/Kg			11/26/18 18:58	1
1,1-Dichloropropene	ND		40	ug/Kg			11/26/18 18:58	1
Ethylbenzene	ND		40	ug/Kg			11/26/18 18:58	
•	ND ND		150				11/26/18 18:58	1
Hexachlorobutadiene	ND ND		40	ug/Kg			11/26/18 18:58	1
Isopropylbenzene	ND			ug/Kg			11/26/18 18:58	
4-Isopropyltoluene	ND ND		40 250	ug/Kg				1
Methylene Chloride				ug/Kg			11/26/18 18:58	1
Methyl tert-butyl ether	ND		40	ug/Kg			11/26/18 18:58	
m-Xylene & p-Xylene	ND		200	ug/Kg			11/26/18 18:58	1
Naphthalene	ND		100	ug/Kg			11/26/18 18:58	1
n-Butylbenzene	ND		150	ug/Kg			11/26/18 18:58	
N-Propylbenzene	ND		40	ug/Kg			11/26/18 18:58	1
o-Xylene	ND		60	ug/Kg			11/26/18 18:58	1
sec-Butylbenzene	ND		40	ug/Kg			11/26/18 18:58	1
Styrene	ND		40	ug/Kg			11/26/18 18:58	1
t-Butylbenzene	ND		40	ug/Kg			11/26/18 18:58	1
1,1,1,2-Tetrachloroethane	ND		40	ug/Kg		11/26/18 16:00	11/26/18 18:58	1
1,1,2,2-Tetrachloroethane	ND		20	ug/Kg		11/26/18 16:00	11/26/18 18:58	1
Tetrachloroethene	ND		40	ug/Kg		11/26/18 16:00	11/26/18 18:58	1
Toluene	ND		150	ug/Kg		11/26/18 16:00	11/26/18 18:58	1

TestAmerica Seattle

12/12/2018

Page 18 of 37

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

2

K

4

6

0

10

1

ea)

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 580-289674/1-A
Matrix: Solid
Analysis Batch: 289687

MR MR

MR MR

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	ND		60		ug/Kg		11/26/18 16:00	11/26/18 18:58	1
trans-1,3-Dichloropropene	ND		40		ug/Kg		11/26/18 16:00	11/26/18 18:58	1
1,2,4-Trichlorobenzene	ND		60		ug/Kg		11/26/18 16:00	11/26/18 18:58	1
1,2,3-Trichlorobenzene	ND		150		ug/Kg		11/26/18 16:00	11/26/18 18:58	1
1,1,1-Trichloroethane	ND		40		ug/Kg		11/26/18 16:00	11/26/18 18:58	1
1,1,2-Trichloroethane	ND		20		ug/Kg		11/26/18 16:00	11/26/18 18:58	1
Trichloroethene	ND		60		ug/Kg		11/26/18 16:00	11/26/18 18:58	1
Trichlorofluoromethane	ND		200		ug/Kg		11/26/18 16:00	11/26/18 18:58	1
1,2,3-Trichloropropane	ND		40		ug/Kg		11/26/18 16:00	11/26/18 18:58	1
1,3,5-Trimethylbenzene	ND		40		ug/Kg		11/26/18 16:00	11/26/18 18:58	1
1,2,4-Trimethylbenzene	ND		40		ug/Kg		11/26/18 16:00	11/26/18 18:58	1
Vinyl chloride	ND		150		ug/Kg		11/26/18 16:00	11/26/18 18:58	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	106		80 - 120	11/26/18 16:00	11/26/18 18:58	1
4-Bromofluorobenzene (Surr)	100		80 - 120	11/26/18 16:00	11/26/18 18:58	1
Dibromofluoromethane (Surr)	98		80 - 120	11/26/18 16:00	11/26/18 18:58	1
Trifluorotoluene (Surr)	102		80 - 120	11/26/18 16:00	11/26/18 18:58	1
1,2-Dichloroethane-d4 (Surr)	100		80 - 121	11/26/18 16:00	11/26/18 18:58	1

Lab Sample ID: LCS 580-289674/2-A

Matrix: Solid

Analysis Batch: 289687

Prep Type: Total/NA Prep Batch: 289674

Alialysis balcii. 209007	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	800	826		ug/Kg		103	79 - 135
Bromobenzene	800	964		ug/Kg		121	78 - 126
Bromochloromethane	800	794		ug/Kg		99	76 - 131
Bromodichloromethane	800	799		ug/Kg		100	73 - 132
Bromoform	800	897		ug/Kg		112	65 - 134
Bromomethane	800	908		ug/Kg		114	66 - 133
Carbon tetrachloride	800	991		ug/Kg		124	66 - 150
Chlorobenzene	800	838		ug/Kg		105	80 - 123
Chloroethane	800	984		ug/Kg		123	67 - 139
Chloroform	800	801		ug/Kg		100	74 - 133
Chloromethane	800	1010		ug/Kg		126	53 - 145
2-Chlorotoluene	800	869		ug/Kg		109	77 - 127
4-Chlorotoluene	800	836		ug/Kg		104	78 - 126
cis-1,2-Dichloroethene	800	836		ug/Kg		104	74 - 129
cis-1,3-Dichloropropene	800	875		ug/Kg		109	80 - 122
Dibromochloromethane	800	836		ug/Kg		105	75 - 125
1,2-Dibromo-3-Chloropropane	800	706		ug/Kg		88	53 - 135
1,2-Dibromoethane	800	841		ug/Kg		105	77 - 123
Dibromomethane	800	754		ug/Kg		94	72 - 130
1,3-Dichlorobenzene	800	841		ug/Kg		105	78 - 122
1,4-Dichlorobenzene	800	817		ug/Kg		102	77 - 123
1,2-Dichlorobenzene	800	831		ug/Kg		104	78 - 120
Dichlorodifluoromethane	800	1500	*	ug/Kg		187	26 - 145

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Lab Sample ID: LCS 580-289674/2-A

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 289674** %Rec.

Ы

Matrix: Solid			P
Analysis Batch: 289687			
-	Spike	LCS LCS	Q

	эріке	LUS	LCS			%Rec.	
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	
1,1-Dichloroethane	800	816	ug/Kg		102	70 - 141	
1,2-Dichloroethane	800	821	ug/Kg		103	68 - 132	
1,1-Dichloroethene	800	963	ug/Kg		120	68 - 137	
2,2-Dichloropropane	800	998	ug/Kg		125	62 - 150	
1,2-Dichloropropane	800	790	ug/Kg		99	75 - 136	
1,3-Dichloropropane	800	826	ug/Kg		103	80 - 120	
1,1-Dichloropropene	800	894	ug/Kg		112	76 - 141	
Ethylbenzene	800	911	ug/Kg		114	80 - 127	
Hexachlorobutadiene	800	872	ug/Kg		109	65 - 136	
Isopropylbenzene	800	930	ug/Kg		116	80 - 128	
4-Isopropyltoluene	800	840	ug/Kg		105	71 - 129	
Methylene Chloride	800	844	ug/Kg		106	66 - 141	
Methyl tert-butyl ether	800	859	ug/Kg		107	75 - 126	
m-Xylene & p-Xylene	800	933	ug/Kg		117	80 - 128	
Naphthalene	800	536	ug/Kg		67	67 - 124	
n-Butylbenzene	800	848	ug/Kg		106	77 - 130	
N-Propylbenzene	800	911	ug/Kg		114	74 - 127	
o-Xylene	800	884	ug/Kg		111	80 - 125	
sec-Butylbenzene	800	892	ug/Kg		112	77 - 129	
Styrene	800	916	ug/Kg		115	79 - 129	
t-Butylbenzene	800	901	ug/Kg		113	79 - 127	
1,1,1,2-Tetrachloroethane	800	837	ug/Kg		105	79 - 128	
1,1,2,2-Tetrachloroethane	800	724	ug/Kg		90	74 - 120	
Tetrachloroethene	800	965	ug/Kg		121	71 - 136	
Toluene	800	878	ug/Kg		110	80 - 125	
trans-1,2-Dichloroethene	800	832	ug/Kg		104	71 - 135	
trans-1,3-Dichloropropene	800	823	ug/Kg		103	80 - 121	
1,2,4-Trichlorobenzene	800	761	ug/Kg		95	68 - 131	
1,2,3-Trichlorobenzene	800	549	* ug/Kg		69	71 - 129	
1,1,1-Trichloroethane	800	989	ug/Kg		124	69 - 144	
1,1,2-Trichloroethane	800	882	ug/Kg		110	80 - 123	
Trichloroethene	800	857	ug/Kg		107	69 - 144	
Trichlorofluoromethane	800	979	ug/Kg		122	73 - 143	
1,2,3-Trichloropropane	800	855	ug/Kg		107	70 - 127	
1,3,5-Trimethylbenzene	800	896	ug/Kg		112	72 - 128	
1,2,4-Trimethylbenzene	800	881	ug/Kg		110	73 - 127	
Vinyl chloride	800	730	ug/Kg		91	52 - 150	

LC	S	L	cs

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	104		80 - 120
4-Bromofluorobenzene (Surr)	101		80 - 120
Dibromofluoromethane (Surr)	98		80 - 120
Trifluorotoluene (Surr)	100		80 - 120
1,2-Dichloroethane-d4 (Surr)	98		80 - 121

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 580-289674/3-A

Client Sample ID: Lab Control Sample Dup
Matrix: Solid

Prep Type: Total/NA
Analysis Batch: 289687

Prep Batch: 289674

Matrix: Solid Analysis Batch: 289687	Spike	LCSD	LCSD	D		Prep Type: To Prep Batch: %Rec.			
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits	RPD	Limit	
Benzene		837		ug/Kg	105	79 - 135	1	15	
Bromobenzene	800	927		ug/Kg	116	78 - 126	4	12	
Bromochloromethane	800	817		ug/Kg	102	76 - 131	3	15	
Bromodichloromethane	800	807		ug/Kg	101	73 - 132	1	10	
Bromoform	800	918		ug/Kg	115	65 - 134	2	17	
Bromomethane	800	981		ug/Kg	123	66 - 133	8	22	
Carbon tetrachloride	800	999		ug/Kg	125	66 - 150	1	12	
Chlorobenzene	800	848		ug/Kg	106	80 - 123	1	10	
Chloroethane	800	1050		ug/Kg	132	67 - 139	7	22	
Chloroform	800	826		ug/Kg	103	74 - 133	3	13	
Chloromethane	800	1020		ug/Kg	127	53 - 145	1	18	
2-Chlorotoluene	800	869		ug/Kg	109	77 - 127	0	16	
4-Chlorotoluene	800	845		ug/Kg	106	78 - 126	1	16	
cis-1,2-Dichloroethene	800	878		ug/Kg	110	74 - 129	5	14	
cis-1,3-Dichloropropene	800	894		ug/Kg	112	80 - 122	2	16	
Dibromochloromethane	800	846		ug/Kg	106	75 - 125	1	11	
1,2-Dibromo-3-Chloropropane	800	736		ug/Kg	92	53 - 135	4	20	
1,2-Dibromoethane	800	858		ug/Kg	107	77 - 123	2	11	
Dibromomethane	800	781		ug/Kg	98	72 - 130	3	14	
1,3-Dichlorobenzene	800	847		ug/Kg	106	78 - 122	1	12	
1,4-Dichlorobenzene	800	838		ug/Kg	105	77 - 123	2	12	
1,2-Dichlorobenzene	800	845		ug/Kg	106	78 - 120	2	12	
Dichlorodifluoromethane	800	1640	*	ug/Kg	205	26 - 145	9	23	
1,1-Dichloroethane	800	850		ug/Kg	106	70 - 141	4	13	
1,2-Dichloroethane	800	844		ug/Kg	105	68 - 132	3	11	
1,1-Dichloroethene	800	1040		ug/Kg	130	68 - 137	8	17	
2,2-Dichloropropane	800	834		ug/Kg	104	62 - 150	18	20	
1,2-Dichloropropane	800	796		ug/Kg	99	75 - 136	1	10	
1,3-Dichloropropane	800	829		ug/Kg	104	80 - 120	0	18	
1,1-Dichloropropene	800	928		ug/Kg	116	76 - 141	4	11	
Ethylbenzene	800	906		ug/Kg	113	80 - 127	1	16	
Hexachlorobutadiene	800	893		ug/Kg	112	65 - 136	2	19	
Isopropylbenzene	800	957		ug/Kg	120	80 - 128	3	17	
4-Isopropyltoluene	800	860		ug/Kg	107	71 - 129	2	11	
Methylene Chloride	800	867		ug/Kg	108	66 - 141	3	17	
Methyl tert-butyl ether	800	833		ug/Kg	104	75 - 126	3	15	
m-Xylene & p-Xylene	800	952		ug/Kg	119	80 - 128	2	13	
Naphthalene	800	546		ug/Kg	68	67 - 124	2	17	
n-Butylbenzene	800	896		ug/Kg	112	77 - 130	5	12	
N-Propylbenzene	800	904		ug/Kg	113	74 - 127	1	17	
o-Xylene	800	913		ug/Kg	114	80 - 125	3	14	
sec-Butylbenzene	800	903		ug/Kg	113	77 - 129	1	12	
Styrene	800	913		ug/Kg	114	79 - 129	0	15	
t-Butylbenzene	800	916		ug/Kg	114	79 - 127	2	13	
1,1,1,2-Tetrachloroethane	800	862		ug/Kg	108	79 - 128	3	11	
1,1,2,2-Tetrachloroethane	800	754		ug/Kg	94	74 - 120	4	18	
Tetrachloroethene	800	975		ug/Kg	122	71 - 136	1	16	
Toluene	800	881		ug/Kg	110	80 - 125	0	16	

TestAmerica Seattle

12/12/2018

Page 21 of 37

9

3

A

6

Ö

1(

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 580-289674/3-A

Matrix: Solid

Analysis Batch: 289687

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 289674

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
trans-1,2-Dichloroethene	800	871		ug/Kg		109	71 - 135	5	16
trans-1,3-Dichloropropene	800	818		ug/Kg		102	80 - 121	1	17
1,2,4-Trichlorobenzene	800	782		ug/Kg		98	68 - 131	3	16
1,2,3-Trichlorobenzene	800	572		ug/Kg		72	71 - 129	4	18
1,1,1-Trichloroethane	800	1010		ug/Kg		127	69 - 144	2	14
1,1,2-Trichloroethane	800	875		ug/Kg		109	80 - 123	1	15
Trichloroethene	800	900		ug/Kg		113	69 - 144	5	10
Trichlorofluoromethane	800	1240	*	ug/Kg		155	73 - 143	23	17
1,2,3-Trichloropropane	800	848		ug/Kg		106	70 - 127	1	16
1,3,5-Trimethylbenzene	800	897		ug/Kg		112	72 - 128	0	16
1,2,4-Trimethylbenzene	800	890		ug/Kg		111	73 - 127	1	12
Vinyl chloride	800	2030	*	ug/Kg		254	52 - 150	94	37

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	104		80 - 120
4-Bromofluorobenzene (Surr)	103		80 - 120
Dibromofluoromethane (Surr)	101		80 - 120
Trifluorotoluene (Surr)	97		80 - 120
1,2-Dichloroethane-d4 (Surr)	98		80 - 121

Method: 8151A - Herbicides (GC/MS)

Lab Sample ID: MB 580-290141/1-A

Matrix: Solid

Analysis Batch: 290489

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 290141

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dalapon	ND		160		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
Dicamba	ND		90		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
Mecoprop	ND		90		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
MCPA	ND		90		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
Dichlorprop	ND		90		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
2,4-D	ND		90		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
Pentachlorophenol	ND		160		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
Silvex (2,4,5-TP)	ND		90		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
2,4,5-T	ND		90		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
Dinoseb	ND		160		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
2,4-DB	ND		90		ug/Kg		12/03/18 12:34	12/06/18 15:00	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2.4-Dichlorophenylacetic acid	110		53 - 150	12/03/18 12:34	12/06/18 15:00	

Client Sample ID: Lab Control Sample Dup

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Method: 8151A - Herbicides (GC/MS) (Continued)

Lab Sample ID: LCS 580-290141/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Total/NA** Analysis Batch: 290489 **Prep Batch: 290141** Spike LCS LCS %Rec.

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dalapon	333	183		ug/Kg		55	15 - 120	
Dicamba	333	295		ug/Kg		88	36 - 134	
Mecoprop	333	342		ug/Kg		103	48 - 150	
MCPA	333	320		ug/Kg		96	51 - 150	
Dichlorprop	333	362		ug/Kg		109	47 - 150	
2,4-D	333	332		ug/Kg		100	51 ₋ 150	
Pentachlorophenol	333	340		ug/Kg		102	44 - 150	
Silvex (2,4,5-TP)	333	389		ug/Kg		117	53 - 150	
2,4,5-T	333	324		ug/Kg		97	56 ₋ 150	
Dinoseb	333	259		ug/Kg		78	38 - 150	
2,4-DB	333	391		ug/Kg		117	47 - 150	

LCS LCS %Recovery Qualifier Limits Surrogate 53 - 150 2,4-Dichlorophenylacetic acid 91

Lab Sample ID: LCSD 580-290141/3-A

Matrix: Solid Prep Type: Total/NA Analysis Batch: 290489 **Prep Batch: 290141**

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dalapon	333	209		ug/Kg		63	15 - 120	13	40
Dicamba	333	321		ug/Kg		96	36 - 134	9	40
Mecoprop	333	362		ug/Kg		109	48 - 150	5	40
MCPA	333	337		ug/Kg		101	51 - 150	5	40
Dichlorprop	333	380		ug/Kg		114	47 - 150	5	40
2,4-D	333	307		ug/Kg		92	51 - 150	8	40
Pentachlorophenol	333	351		ug/Kg		105	44 - 150	3	40
Silvex (2,4,5-TP)	333	379		ug/Kg		114	53 - 150	3	40
2,4,5-T	333	341		ug/Kg		102	56 - 150	5	40
Dinoseb	333	273		ug/Kg		82	38 - 150	5	40
2,4-DB	333	395		ug/Kg		119	47 - 150	1	40

LCSD LCSD Surrogate %Recovery Qualifier Limits 53 - 150 2,4-Dichlorophenylacetic acid

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 580-290094/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA

Prep Batch: 290094 **Analysis Batch: 290528**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
2-Methylnaphthalene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
1-Methylnaphthalene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Acenaphthylene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Acenaphthene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1

TestAmerica Seattle

Page 23 of 37

12/12/2018

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: MB 580-290094/1-A

Matrix: Solid

Analysis Batch: 290528

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 290094

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluorene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Phenanthrene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Anthracene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Fluoranthene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Pyrene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Benzo[a]anthracene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Chrysene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Benzo[b]fluoranthene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Benzo[k]fluoranthene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Benzo[a]pyrene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Indeno[1,2,3-cd]pyrene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Dibenz(a,h)anthracene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Benzo[g,h,i]perylene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1

MB MB

%Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac <u>12/01/18 20:47</u> <u>12/07/18 14:03</u> Terphenyl-d14 121 X 57 - 120

Lab Sample ID: LCS 580-290094/2-A

Matrix: Solid

Analysis Batch: 290528

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 290094**

7 manyono 2010 m 200020	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Naphthalene	1000	919		ug/Kg		92	70 - 120
2-Methylnaphthalene	1000	1010		ug/Kg		101	68 - 120
1-Methylnaphthalene	1000	986		ug/Kg		99	71 - 120
Acenaphthylene	1000	1020		ug/Kg		102	68 - 120
Acenaphthene	1000	928		ug/Kg		93	68 - 120
Fluorene	1000	972		ug/Kg		97	73 - 120
Phenanthrene	1000	933		ug/Kg		93	73 - 120
Anthracene	1000	1040		ug/Kg		104	73 - 125
Fluoranthene	1000	1070		ug/Kg		107	74 ₋ 125
Pyrene	1000	1010		ug/Kg		101	70 - 120
Benzo[a]anthracene	1000	1050		ug/Kg		105	66 - 120
Chrysene	1000	908		ug/Kg		91	69 - 120
Benzo[b]fluoranthene	1000	925		ug/Kg		92	63 - 121
Benzo[k]fluoranthene	1000	936		ug/Kg		94	63 - 123
Benzo[a]pyrene	1000	988		ug/Kg		99	72 - 124
Indeno[1,2,3-cd]pyrene	1000	878		ug/Kg		88	65 - 121
Dibenz(a,h)anthracene	1000	970		ug/Kg		97	70 - 125
Benzo[g,h,i]perylene	1000	960		ug/Kg		96	63 - 120

LCS LCS

Surrogate %Recovery Qualifier Limits Terphenyl-d14 109

57 - 120

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Method: 8081A - Organochlorine Pesticides (GC)

Lab Sample ID: MB 580-290091/1-A	Client Sample ID: Method Blank
Matrix: Solid	Prep Type: Total/NA
Analysis Batch: 290547	Prep Batch: 290091
MP MP	

	MB	MR							
Analyte	Result	Qualifier	RL	MDL (Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		3.0		ug/Kg		12/01/18 18:13	12/07/18 12:29	1
alpha-BHC	ND		2.0	ι	ug/Kg		12/01/18 18:13	12/07/18 12:29	1
beta-BHC	ND		5.0	ι	ug/Kg		12/01/18 18:13	12/07/18 12:29	1
delta-BHC	ND		3.0	ι	ug/Kg		12/01/18 18:13	12/07/18 12:29	1
gamma-BHC (Lindane)	ND		2.0	ι	ug/Kg		12/01/18 18:13	12/07/18 12:29	1
4,4'-DDD	ND		2.0	ι	ug/Kg		12/01/18 18:13	12/07/18 12:29	1
4,4'-DDE	ND		2.0	ι	ug/Kg		12/01/18 18:13	12/07/18 12:29	1
4,4'-DDT	ND		2.0	ι	ug/Kg		12/01/18 18:13	12/07/18 12:29	1
Dieldrin	ND		2.0	ι	ug/Kg		12/01/18 18:13	12/07/18 12:29	1
Endosulfan I	ND		2.0	ι	ug/Kg		12/01/18 18:13	12/07/18 12:29	1
Endosulfan II	ND		2.0	ι	ug/Kg		12/01/18 18:13	12/07/18 12:29	1
Endosulfan sulfate	ND		2.0	ι	ug/Kg		12/01/18 18:13	12/07/18 12:29	1
Endrin	ND		2.0	i	ug/Kg		12/01/18 18:13	12/07/18 12:29	1
Endrin aldehyde	ND		20	ι	ug/Kg		12/01/18 18:13	12/07/18 12:29	1
Heptachlor	ND		3.0	ι	ug/Kg		12/01/18 18:13	12/07/18 12:29	1
Heptachlor epoxide	ND		3.0	i	ug/Kg		12/01/18 18:13	12/07/18 12:29	1
Methoxychlor	ND		10	ι	ug/Kg		12/01/18 18:13	12/07/18 12:29	1
Endrin ketone	ND		2.0	ι	ug/Kg		12/01/18 18:13	12/07/18 12:29	1
Toxaphene	ND		100	ι	ug/Kg		12/01/18 18:13	12/07/18 12:29	1
cis-Chlordane	ND		2.0	ι	ug/Kg		12/01/18 18:13	12/07/18 12:29	1
trans-Chlordane	ND		3.0	ι	ug/Kg		12/01/18 18:13	12/07/18 12:29	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac <u>12/01/18 18:13</u> <u>12/07/18 12:29</u> Tetrachloro-m-xylene 85 50 - 123 DCB Decachlorobiphenyl 43 - 129 12/01/18 18:13 12/07/18 12:29 86

Lab Sample ID: LCS 580-290091/4-A

Matrix: Solid

Client	Sample	ID: Lab	Control	Sample
		Prep	Type: 1	Γotal/NA
		Pro	n Ratch	290091

Analysis Batch: 290547	Spike	LCS	LCS				Prep Batch: 290091 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aldrin	20.0	16.5		ug/Kg		83	56 - 121
alpha-BHC	20.0	17.0		ug/Kg		85	62 - 120
beta-BHC	20.0	17.0		ug/Kg		85	62 - 120
delta-BHC	20.0	16.5		ug/Kg		82	53 - 124
gamma-BHC (Lindane)	20.0	15.9		ug/Kg		79	55 - 120
4,4'-DDD	20.0	17.3		ug/Kg		86	61 - 122
4,4'-DDE	20.0	17.2		ug/Kg		86	53 - 124
4,4'-DDT	20.0	17.7		ug/Kg		89	57 - 137
Dieldrin	20.0	17.0		ug/Kg		85	63 - 121
Endosulfan I	20.0	17.3		ug/Kg		87	64 - 121
Endosulfan II	20.0	16.5		ug/Kg		83	37 - 139
Endosulfan sulfate	20.0	16.5		ug/Kg		82	63 - 120
Endrin	20.0	20.9		ug/Kg		104	70 - 127
Endrin aldehyde	20.0	14.6	J	ug/Kg		73	36 - 150
Heptachlor	20.0	17.8		ug/Kg		89	64 - 124
Heptachlor epoxide	20.0	16.5		ug/Kg		82	62 - 120
Methoxychlor	20.0	17.1		ug/Kg		86	61 - 130

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCS 580-290091/4-A

Lab Sample ID: LCSD 580-290091/5-A

Matrix: Solid

Analysis Batch: 290547

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 290091

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Endrin ketone	20.0	16.4		ug/Kg		82	56 - 120	
cis-Chlordane	20.0	16.8		ug/Kg		84	62 - 120	
trans-Chlordane	20.0	16.9		ug/Kg		85	60 - 120	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
Tetrachloro-m-xylene	84	50 - 123
DCB Decachlorobiphenyl	88	43 - 129

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Analysis Batch: 290547

Prep Type: Total/NA **Prep Batch: 290091**

Spike LCSD LCSD %Rec. **RPD** Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Aldrin 20.0 56 - 121 16.3 ug/Kg 82 18 alpha-BHC 20.0 87 62 - 120 2 17.4 ug/Kg 15 beta-BHC 20.0 18.9 95 62 - 120 ug/Kg 10 19 20.0 89 53 - 124 delta-BHC 17.7 ug/Kg 18 gamma-BHC (Lindane) 20.0 16.3 ug/Kg 81 55 - 120 3 18 4,4'-DDD 20.0 17.3 ug/Kg 87 61 - 122 18 4,4'-DDE 20.0 17.3 ug/Kg 86 53 - 124 O 18 4,4'-DDT 20.0 17.5 88 57 - 137 23 ug/Kg Dieldrin 20.0 85 63 - 121 19 17 0 O ug/Kg Endosulfan I 20.0 17.4 ug/Kg 87 64 - 121 20 Endosulfan II 20.0 83 37 - 1390 18 16.5 ug/Kg Endosulfan sulfate 20.0 63 - 120 16.7 ug/Kg 84 2 19 Endrin 20.0 20.6 ug/Kg 103 70 - 127 20 Endrin aldehyde 20.0 13.5 J ug/Kg 67 36 - 150 24 Heptachlor 20.0 18.5 92 64 - 124 17 ug/Kg 83 62 - 120 20 Heptachlor epoxide 20.0 16.6 ug/Kg Methoxychlor 20.0 87 61 - 130 2 20 17.4 ug/Kg 20.0 84 56 - 120 Endrin ketone 16.7 ug/Kg 2 18 cis-Chlordane 20.0 16.8 84 62 - 120 0 18 ug/Kg trans-Chlordane 20.0 16.9 ug/Kg 85 60 - 120 19

LCSD LCSD Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 84 50 - 123 DCB Decachlorobiphenyl 84 43 - 129

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

MD MD

Lab Sample ID: MB 580-290091/1-A

Matrix: Solid

Analysis Batch: 290834

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 290091

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.020		mg/Kg		12/01/18 18:13	12/11/18 14:08	1
PCB-1221	ND		0.020		mg/Kg		12/01/18 18:13	12/11/18 14:08	1

TestAmerica Seattle

Page 26 of 37

12/12/2018

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: MB 580-290091/1-A

Matrix: Solid

Analysis Batch: 290834

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 290091

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1232	ND		0.020		mg/Kg		12/01/18 18:13	12/11/18 14:08	1
PCB-1242	ND		0.020		mg/Kg		12/01/18 18:13	12/11/18 14:08	1
PCB-1248	ND		0.020		mg/Kg		12/01/18 18:13	12/11/18 14:08	1
PCB-1254	ND		0.020		mg/Kg		12/01/18 18:13	12/11/18 14:08	1
PCB-1260	ND		0.020		mg/Kg		12/01/18 18:13	12/11/18 14:08	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	87		54 - 142	12/01/18 18:13	12/11/18 14:08	1
Tetrachloro-m-xylene	92		58 - 122	12/01/18 18:13	12/11/18 14:08	1

LCS LCS

Lab Sample ID: LCS 580-290091/2-A

Matrix: Solid

Analysis Batch: 290834

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 290091 %Rec.

1		opiito						7011001	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	PCB-1016	0.100	0.0878		mg/Kg		88	64 - 120	
	PCB-1260	0.100	0.0977		mg/Kg		98	63 - 130	

Snika

LCS LCS

Surrogate	%Recovery Q	ualifier	Limits
DCB Decachlorobiphenyl	87		54 - 142
Tetrachloro-m-xylene	90		58 - 122

Lab Sample ID: LCSD 580-290091/3-A

Matrix: Solid

Amelicale Detale 200024

Client Sample	ID:	Lab	Contro	Sample	Dup

Prep Type: Total/NA

Analysis Batch: 290834							Ргер ва	itcn: 28	10091	
_	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
PCB-1016	 0.100	0.0869		mg/Kg		87	64 - 120	1	21	
PCB-1260	0.100	0.0966		mg/Kg		97	63 - 130	1	25	

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	83		54 - 142
Tetrachloro-m-xylene	86		58 ₋ 122

Lab Sample ID: 580-81942-1 MS

Matrix: Solid

Analysis Batch: 290834

Client Sample ID: SS-04 **Prep Type: Total/NA**

Prep Batch: 290091

7 maryolo Batom 200004	Sample	Sample	Spike	MS	MS				%Rec.	20000
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	ND		0.105	0.0857		mg/Kg	-	82	64 - 120	
PCB-1260	ND		0.105	0.0820		ma/Ka	₩	78	63 - 130	

MS MS

Surrogate	%Recovery Qualifier	Limits
DCB Decachlorobiphenyl	67	54 - 142
Tetrachloro-m-xylene	85	58 - 122

Client Sample ID: Method Blank

Lab Sample ID: MB 580-290093/1-A

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: 580-81942 Matrix: Solid Analysis Batch: 290834		Sample	Spike	MSD	MSD			CI	ient Samp Prep Tyl Prep Ba %Rec.	oe: Tot	al/NA
Analyte	•	Qualifier	Added	_	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016	ND		0.106	0.0866		mg/Kg	<u></u>	82	64 - 120	1	21
PCB-1260	ND		0.106	0.0822		mg/Kg	₽	78	63 - 130	0	25
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
DCB Decachlorobiphenyl	64		54 - 142								
Tetrachloro-m-xylene	80		58 - 122								

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Matrix: Solid Analysis Batch: 290662								Prep Type: To Prep Batch: 2	
		MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	ND		50		mg/Kg		12/01/18 19:40	12/10/18 19:26	1
Motor Oil (>C24-C36)	ND		50		mg/Kg		12/01/18 19:40	12/10/18 19:26	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	91		50 - 150				12/01/18 19:40	12/10/18 19:26	1

Lab Sample ID: LCS 580 Matrix: Solid Analysis Batch: 290662	-290093/2-A					Clier	nt Sa	mple ID	Prep Type: Total/NA Prep Batch: 290093
			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
#2 Diesel (C10-C24)			500	448		mg/Kg		90	70 - 125
Motor Oil (>C24-C36)			500	481		mg/Kg		96	70 - 129
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
o-Terphenyl	70		50 - 150						

Lab Sample ID: LCSD 580 Matrix: Solid Analysis Batch: 290662	-290093/3-A				C	Client Sa	mple	ID: Lat	Control S Prep Tyl Prep Ba	pe: Tot	al/NA
•			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
#2 Diesel (C10-C24)			500	455		mg/Kg		91	70 - 125	2	16
Motor Oil (>C24-C36)			500	495		mg/Kg		99	70 - 129	3	16
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
o-Terphenyl	76		50 - 150								

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 580-289673/22-A

Matrix: Solid

Analysis Batch: 289839

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 289673

	MB I	VIB						
Analyte	Result C	Qualifier RI	_ MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND ND	3.0	<u> </u>	mg/Kg		11/26/18 16:43	11/28/18 09:50	1
Barium	ND	0.50)	mg/Kg		11/26/18 16:43	11/28/18 09:50	1
Cadmium	ND	1.0)	mg/Kg		11/26/18 16:43	11/28/18 09:50	1
Chromium	ND	1.3	3	mg/Kg		11/26/18 16:43	11/28/18 09:50	1
Lead	ND	1.9	5	mg/Kg		11/26/18 16:43	11/28/18 09:50	1
Selenium	ND	5.0)	mg/Kg		11/26/18 16:43	11/28/18 09:50	1
Silver	ND	2.	5	mg/Kg		11/26/18 16:43	11/28/18 09:50	1

Lab Sample ID: LCS 580-289673/23-A

Matrix: Solid

Analysis Batch: 289839

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 289673

LCS LCS Spike %Rec. Added Limits Analyte Result Qualifier Unit D %Rec Arsenic 50.0 52.9 mg/Kg 106 80 - 120 Barium 50.0 54.3 109 80 - 120 mg/Kg Cadmium 50.0 49.7 mg/Kg 99 80 - 120 Chromium 50.0 52.7 mg/Kg 105 80 - 120 Lead 50.0 50.9 mg/Kg 102 80 - 120 Selenium 50.0 52.6 mg/Kg 105 80 - 120 Silver 50.0 53.0 mg/Kg 106 80 - 120

Lab Sample ID: LCSD 580-289673/24-A

Matrix: Solid

Analysis Batch: 289839

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA **Prep Batch: 289673**

7 many old Datolli Doddod									
-	Spike	LCSD L	CSD				%Rec.		RPD
Analyte	Added	Result Q	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	50.0	52.3		mg/Kg		105	80 - 120	1	20
Barium	50.0	53.7		mg/Kg		107	80 - 120	1	20
Cadmium	50.0	49.3		mg/Kg		99	80 - 120	1	20
Chromium	50.0	52.1		mg/Kg		104	80 - 120	1	20
Lead	50.0	50.6		mg/Kg		101	80 - 120	1	20
Selenium	50.0	51.5		mg/Kg		103	80 - 120	2	20
Silver	50.0	52.2		mg/Kg		104	80 - 120	2	20

Lab Sample ID: MB 580-290009/22-A

Matrix: Solid

Analysis Batch: 290167

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 290009**

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		3.0		mg/Kg		11/30/18 09:57	12/03/18 11:49	1
Barium	ND		0.50		mg/Kg		11/30/18 09:57	12/03/18 11:49	1
Cadmium	ND		1.0		mg/Kg		11/30/18 09:57	12/03/18 11:49	1
Chromium	ND		1.3		mg/Kg		11/30/18 09:57	12/03/18 11:49	1
Lead	ND		1.5		mg/Kg		11/30/18 09:57	12/03/18 11:49	1
Selenium	ND		5.0		mg/Kg		11/30/18 09:57	12/03/18 11:49	1
Silver	ND		2.5		mg/Kg		11/30/18 09:57	12/03/18 11:49	1

TestAmerica Seattle

Page 29 of 37

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCS 580-290009/23-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA Analysis Batch: 290167 Prep Batch: 290009**

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	
Arsenic	50.0	52.1	mg/K	g –	104	80 - 120	
Barium	50.0	54.6	mg/K	g	109	80 - 120	
Cadmium	50.0	49.3	mg/K	g	99	80 - 120	
Chromium	50.0	52.8	mg/K	g	106	80 - 120	
Lead	50.0	51.9	mg/K	g	104	80 - 120	
Selenium	50.0	51.1	mg/K	g	102	80 - 120	
Silver	50.0	53.3	mg/K	g	107	80 - 120	

Client Sample ID: Lab Control Sample Dup

101

mg/Kg

80 - 120

Prep Batch: 289744

20

Matrix: Solid Analysis Batch: 290167							Prep Typ Prep Ba		
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	50.0	52.8		mg/Kg		106	80 - 120	1	20
Barium	50.0	55.9		mg/Kg		112	80 - 120	2	20
Cadmium	50.0	49.8		mg/Kg		100	80 - 120	1	20
Chromium	50.0	53.3		mg/Kg		107	80 - 120	1	20
Lead	50.0	52.4		mg/Kg		105	80 - 120	1	20
Selenium	50.0	50.7		mg/Kg		101	80 - 120	1	20

50.7

Method: 7471A - Mercury (CVAA)

Lab Sample ID: LCSD 580-290009/24-A

Lab Sample ID: MB 580-289744/22-A **Client Sample ID: Method Blank Prep Type: Total/NA**

50.0

Matrix: Solid

Silver

Analysis Batch: 289777

MB MB Analyte **Result Qualifier** RL **MDL** Unit Prepared Analyzed Dil Fac ND 0.030 <u>11/27/18 12:00</u> <u>11/27/18 15:08</u> Mercury mg/Kg

Lab Sample ID: LCS 580-289744/23-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 289777** Prep Batch: 289744 Spike LCS LCS %Rec. Added Result Qualifier Unit Limits **Analyte** %Rec Mercury 0.167 0.169 mg/Kg 101 80 - 120

Lab Sample ID: LCSD 580-289744/24-A		(Client Sar	nple	ID: Lab	Control	Sample	Dup	
Matrix: Solid							Prep Typ	e: Tot	al/NA
Analysis Batch: 289777							Prep Ba	tch: 28	39744
•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	0.167	0.171		mg/Kg		103	80 - 120	1	20

TestAmerica Seattle

12/12/2018

2

TestAmerica Job ID: 580-81942-1

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Lab Sample ID: 580-81942-1

Matrix: Solid

Client Sample ID: SS-04
Date Collected: 11/19/18 11:01

Date Received: 11/20/18 09:45

ı		Batch	Batch		Dilution	Batch	Prepared			
	Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
	Total/NA	Analysis	D 2216		1	289461	11/21/18 14:27	JCM	TAL SEA	

Client Sample ID: SS-04 Lab Sample ID: 580-81942-1

Date Collected: 11/19/18 11:01 Date Received: 11/20/18 09:45 Matrix: Solid Percent Solids: 93.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			289674	11/26/18 16:00	ASJ	TAL SEA
Total/NA	Analysis	8260C		1	289687	11/26/18 22:52	ASJ	TAL SEA
Total/NA	Prep	8151A			290141	12/03/18 12:34	BAH	TAL SEA
Total/NA	Analysis	8151A		1	290489	12/06/18 16:43	KFS	TAL SEA
Total/NA	Prep	3546			290094	12/01/18 20:47	BAH	TAL SEA
Total/NA	Analysis	8270C SIM		5	290647	12/10/18 16:07	W1T	TAL SEA
Total/NA	Prep	3546			290091	12/01/18 18:13	KMS	TAL SEA
Total/NA	Analysis	8081A		1	290606	12/09/18 15:42	APR	TAL SEA
Total/NA	Prep	3546			290091	12/01/18 18:13	KMS	TAL SEA
Total/NA	Analysis	8082A		1	290834	12/11/18 15:01	TL1	TAL SEA
Total/NA	Prep	3546			290093	12/01/18 19:40	BAH	TAL SEA
Total/NA	Analysis	NWTPH-Dx		10	290662	12/11/18 04:28	Z1R	TAL SEA
Total/NA	Prep	3050B			289673	11/26/18 16:43	JKM	TAL SEA
Total/NA	Analysis	6010B		1	289839	11/28/18 11:59	HJM	TAL SEA
Total/NA	Prep	7471A			289744	11/27/18 12:00	T1H	TAL SEA
Total/NA	Analysis	7471A		1	289777	11/27/18 15:50	T1H	TAL SEA

Client Sample ID: SS-05

Lab Sample ID: 580-81942-2

Matrix: Solid

Date Received: 11/20/18 09:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216			289461	11/21/18 14:27	JCM	TAL SEA

Client Sample ID: SS-05 Lab Sample ID: 580-81942-2

Date Collected: 11/19/18 11:30 Matrix: Solid
Date Received: 11/20/18 09:45 Percent Solids: 93.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			289674	11/26/18 16:00	ASJ	TAL SEA
Total/NA	Analysis	8260C		1	289687	11/26/18 23:18	ASJ	TAL SEA
Total/NA	Prep	8151A			290141	12/03/18 12:34	BAH	TAL SEA
Total/NA	Analysis	8151A		1	290489	12/06/18 17:09	KFS	TAL SEA
Total/NA	Prep	3546			290094	12/01/18 20:47	BAH	TAL SEA
Total/NA	Analysis	8270C SIM		10	290647	12/10/18 16:33	W1T	TAL SEA
Total/NA	Prep	3546			290091	12/01/18 18:13	KMS	TAL SEA

TestAmerica Seattle

Page 31 of 37

12/12/2018

Л

5

7

8

10

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Client Sample ID: SS-05

Date Collected: 11/19/18 11:30

Date Received: 11/20/18 09:45

Lab Sample ID: 580-81942-2

Matrix: Solid

Percent Solids: 93.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8081A		1	290606	12/09/18 16:00	APR	TAL SEA
Total/NA	Prep	3546			290091	12/01/18 18:13	KMS	TAL SEA
Total/NA	Analysis	8082A		1	290834	12/11/18 15:54	TL1	TAL SEA
Total/NA	Prep	3546			290093	12/01/18 19:40	BAH	TAL SEA
Total/NA	Analysis	NWTPH-Dx		20	290662	12/11/18 04:50	Z1R	TAL SEA
Total/NA	Prep	3050B			289673	11/26/18 16:43	JKM	TAL SEA
Total/NA	Analysis	6010B		1	289839	11/28/18 12:02	HJM	TAL SEA
Total/NA	Prep	7471A			289744	11/27/18 12:00	T1H	TAL SEA
Total/NA	Analysis	7471A		1	289777	11/27/18 15:53	T1H	TAL SEA

Client Sample ID: SS-02 Lab Sample ID: 580-81942-3 Date Collected: 11/19/18 14:05 **Matrix: Solid**

Date Received: 11/20/18 09:45

Dilution Batch Batch Batch **Prepared** Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab TAL SEA Total/NA Analysis D 2216 289461 11/21/18 14:27 JCM

Client Sample ID: SS-02 Lab Sample ID: 580-81942-3 Date Collected: 11/19/18 14:05 **Matrix: Solid** Date Received: 11/20/18 09:45 Percent Solids: 91.6

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	5035			289674	11/26/18 16:58		TAL SEA
Total/NA	Analysis	8260C		1	289687	11/26/18 23:44	ASJ	TAL SEA
Total/NA	Prep	8151A			290141	12/03/18 12:34	BAH	TAL SEA
Total/NA	Analysis	8151A		1	290489	12/06/18 17:35	KFS	TAL SEA
Total/NA	Prep	3546			290094	12/01/18 20:47	BAH	TAL SEA
Total/NA	Analysis	8270C SIM		10	290647	12/10/18 16:59	W1T	TAL SEA
Total/NA	Prep	3546			290091	12/01/18 18:13	KMS	TAL SEA
Total/NA	Analysis	8081A		10	290606	12/09/18 16:18	APR	TAL SEA
Total/NA	Prep	3546			290091	12/01/18 18:13	KMS	TAL SEA
Total/NA	Analysis	8082A		1	290834	12/11/18 16:12	TL1	TAL SEA
Total/NA	Prep	3546			290093	12/01/18 19:40	BAH	TAL SEA
Total/NA	Analysis	NWTPH-Dx		20	290662	12/11/18 05:11	Z1R	TAL SEA
Total/NA	Prep	3050B			290009	11/30/18 09:57	JKM	TAL SEA
Total/NA	Analysis	6010B		1	290167	12/03/18 12:36	HJM	TAL SEA
Total/NA	Prep	7471A			289744	11/27/18 12:00	T1H	TAL SEA
Total/NA	Analysis	7471A		1	289777	11/27/18 15:55	T1H	TAL SEA

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Accreditation/Certification Summary

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge TestAmerica Job ID: 580-81942-1

Laboratory: TestAmerica Seattle

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska (UST)	State Program	10	17-024	01-19-19
ANAB	DoD ELAP		L2236	01-19-19
ANAB	ISO/IEC 17025		L2236	01-19-19
California	State Program	9	2901	11-05-19
Montana (UST)	State Program	8	N/A	04-30-20
Nevada	State Program	9	WA000502019-1	07-31-19
Oregon	NELAP	10	WA100007	11-05-19
US Fish & Wildlife	Federal		LE058448-0	07-31-19
USDA	Federal		P330-14-00126	02-10-20
Washington	State Program	10	C553	02-17-19

4

5

7

8

9

10

Sample Summary

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge TestAmerica Job ID: 580-81942-1

Lab Sample ID	Client Sample ID	Matrix	Collected Re	ceived
580-81942-1	SS-04	Solid	11/19/18 11:01 11/20	/18 09:45
580-81942-2	SS-05	Solid	11/19/18 11:30 11/20	/18 09:45
580-81942-3	SS-02	Solid	11/19/18 14:05 11/20	/18 09:45

5

3

4

5

8

9

TestAmerica Seattle

Tacoma, WA 98424 Phone (253) 922-2310 Fax (253) 922-5047 5755 8th Street East

eretar

Client Information Abelzer Jessica

Client Contact

Cascade Earth Sciences Inc.

3511 Pacific Blvd Sw

State, Zip: OR, 97321

hone:

Albany

Page 35 of 37

55-02

Shinery

Seneral/Bridge Work

sample Identification

40-SE 55-05 Custody Seals Intact:

☐ Non-Hazard ☐ Flammable Possible Hazard Identification

Empty Kit Relinquished by:

nquished by: nquished by: inquished by:

TestAmerica Seattle

5755 8th Street East Tacoma, WA 98424

Chain of Custody Record

Phone (253) 922-2310 Fax (253) 922-5047												resistant record
Client Information	Sampler:	enetas		is, Nathan A			Ca	rrier Tracki	ng No(s):		COC No: 580-31424-102	72.1
Client Contact: Abolzent Jessi Ga Penetar	Phone: 541-81	2-6621	E-Mai nath	ii: an.lewis@te:	stamerica	inc.com					Page: Page 1 of 1	
Company: Cascade Earth Sciences Inc.						Analysis	Reque	ested			Job#:	
Address:	Due Date Requested:					ΤÍ	T				Preservation Co	des:
3511 Pacific Blyd Sw City:	TAT Requested (days)										A - HCL	M - Hexane
Albany	TAT Requested (days)	•					1 1				B - NaOH C - Zn Acetate	N - None O - AsNaO2
State, Zip:	1						1				D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3
OR, 97321 Phone:	PO #:										F - MeOH	R - Na2S2O3
	Purchase Order no	t required		ଚ ≧	12						G - Amchlor H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydrate
email: 1855: La Peneter C. Valmont Len abaison@cascade earth com	WO#:			် ေတြ ေ	ATB F						I - Ice J - DI Water	U - Acetone V - MCAA
Project Name:	Project #:			Yes 927 827	E						K - EDTA L - EDA	W - pH 4-5 Z - other (specify)
General/Bridge Work	58008847			Yes MS	E land							L data (apast,)
Shinark Gressed Bridge	SSOW#:					ER ER						
8		Sample N	latrix	Pare Sign 4	# 1	515						
		Type (v	V=water, S=solid,	E E	10	어클						
Sample Identification		ample (C=comp, o∞	waste/cil,	Parfe		• -					Snecial Ir	structions/Note:
Sample Identification		Preservation		THE RESERVE AND ADDRESS OF THE	v I		1000			1 18	Operation	
SS-04	11/19/18 1	101 6	Solid	X.	///	XV	3400000000 PAGUAG				Include	Berium
55-05 55-02	1 11	30 C 5	Solid	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\sum						()	Banum
C(-0)			Solid	· .	XX	YV						, ,
			Solid				11					**************************************
			\dashv				 	+	+			
					' ' ' '	 Section of the little of th	i i i i i i i i i i i i i i i i i i i	1 1830 200 m s	(6) (55)	1 +	<u> </u>	
4-44-4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-					-							
			1									
				-	580-819	942 Chain o	f Custoc	dy dy	II (EE)			
					1 1	I 1	1 1	1 1				·
Possible Hazard Identification	······	······································		Sample L	Disposal	(A fee may	be asse	ssed if s	amples	are retair	ned longer than 1	month)
Non-Hazard Flammable Skin Irritant Pois	on B Unknown	Radiological			turn To C	lient	Disp	osal By L	.ab	Arc	hive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)				Special In	struction	s/QC Requir	ements:					
Empty Kit Relinquished by:	Dat	e:		Time:				Method o	f Shipment			
terinquished by: www Date	Date/Time: 11 / [1 / [1]	1500 Comp	Pany ES	Receive		0			Date/Tin	D118	945	Company
relinquished by:	Date/Time:	1700 X	POK_	Receive	eg by:	m/3/an	K	\supset	Date/Tim	10: 1 11/21/	/	Company TA-Sa
relinquished by:	Date/Time:	Comp		Receive	ed by:	<i>f</i>)	Date/Tin			Company
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No			13,53	Cooler	Temperatu	re(s) °C and Oth	er Remark	° 3	-4	anna (IR5 0.2/0.	4 4=-45
L 100 4 170		Pa	age 36	of 37							, , 0,	Ver: 08/04/201 12/12

Ver: 08/04/2018 2/12/2018

Login Sample Receipt Checklist

Client: Cascade Earth Sciences Inc. Job Number: 580-81942-1

Login Number: 81942 List Source: TestAmerica Seattle

List Number: 1

Creator: O'Connell, Jason I

Creator: O'Connell, Jason I		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

9

4

9

10

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-82053-1

Client Project/Site: Shimanek Covered Bridge

For:

Cascade Earth Sciences Inc. 3511 Pacific Blvd Sw Albany, Oregon 97321

Attn: Abe Izen

Authorized for release by: 12/10/2018 2:23:43 PM

Nathan Lewis, Project Manager I (253)922-2310

nathan.lewis@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at:www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge TestAmerica Job ID: 580-82053-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	4
Client Sample Results	5
QC Sample Results	7
Chronicle	15
Certification Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	20

6

R

9

Case Narrative

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge TestAmerica Job ID: 580-82053-1

Job ID: 580-82053-1

Laboratory: TestAmerica Seattle

Narrative

Job Narrative 580-82053-1

Comments

No additional comments.

Receipt

The sample was received on 11/26/2018 8:10 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 11.5° C.

Receipt Exceptions

Sample SS-03 was received at the laboratory outside the required temperature criteria and outside of the holding time for VOCs. Samples were shipped to the Service Center for Saturday Delivery but the Service Center is not open on weekends. The sample was received Monday morning via UPS.

Client canceled the VOC analysis, along with PCBs and NWTPHDx.

GC/MS Semi VOA

Method(s) 8270C SIM: The matrix spike / matrix spike duplicate / sample duplicate (MS/MSD/DUP) precision for preparation batch 580-290094 and analytical batch 580-290528 was outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) precision was within acceptance limits.

Method(s) 8270C SIM: Surrogate recovery for the method blank associated with preparation batch 290094 was above the acceptance criteria. Analytes in the method blank were non-detect, and surrogate recovery is acceptable in the sample, therefore data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

5

6

7

9

ΙU

1-

Definitions/Glossary

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge TestAmerica Job ID: 580-82053-1

Qualifiers

GC/MS Semi VOA

Qualifier	Qualifier Description
F2	MS/MSD RPD exceeds control limits
Χ	Surrogate is outside control limits

GC Semi VOA

Qualifier	Qualifier Description
-----------	------------------------------

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Glossary

DL, RA, RE, IN

DLC

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DI	Detection Limit (DoD/DOE)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Decision Level Concentration (Radiochemistry)

PQL Practical Quantitation Limit

Quality Control QC

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

Relative Percent Difference, a measure of the relative difference between two points **RPD**

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Client Sample ID: SS-03

Date Collected: 11/23/18 11:20

Date Received: 11/26/18 09:23

Lab Sample ID: 580-82053-1

Matrix: Solid
Percent Solids: 54.5

Method: 8151A - Herbicides Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dalapon	ND ND	270		ug/Kg	<u> </u>	12/03/18 12:34	12/06/18 18:26	1
Dicamba	ND	150		ug/Kg	☼	12/03/18 12:34	12/06/18 18:26	1
Mecoprop	ND	150		ug/Kg	☼	12/03/18 12:34	12/06/18 18:26	1
MCPA	ND	150		ug/Kg	₽	12/03/18 12:34	12/06/18 18:26	1
Dichlorprop	ND	150		ug/Kg	₩	12/03/18 12:34	12/06/18 18:26	1
2,4-D	ND	150		ug/Kg	☼	12/03/18 12:34	12/06/18 18:26	1
Pentachlorophenol	ND	270		ug/Kg	₽	12/03/18 12:34	12/06/18 18:26	1
Silvex (2,4,5-TP)	ND	150		ug/Kg	☼	12/03/18 12:34	12/06/18 18:26	1
2,4,5-T	ND	150		ug/Kg	☼	12/03/18 12:34	12/06/18 18:26	1
Dinoseb	ND	270		ug/Kg	₽	12/03/18 12:34	12/06/18 18:26	1
2,4-DB	ND	150		ug/Kg	≎	12/03/18 12:34	12/06/18 18:26	1
Surrogate	%Recovery Qu	ualifier Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	72	53 - 150				12/03/18 12:34	12/06/18 18:26	1

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	13		9.1	ug/Kg	<u> </u>	12/01/18 20:47	12/07/18 16:38	1
2-Methylnaphthalene	ND		9.1	ug/Kg	₩	12/01/18 20:47	12/07/18 16:38	1
1-Methylnaphthalene	ND		9.1	ug/Kg	₩	12/01/18 20:47	12/07/18 16:38	1
Acenaphthylene	12		9.1	ug/Kg		12/01/18 20:47	12/07/18 16:38	1
Acenaphthene	ND		9.1	ug/Kg	₩	12/01/18 20:47	12/07/18 16:38	1
Fluorene	ND		9.1	ug/Kg	₩	12/01/18 20:47	12/07/18 16:38	1
Phenanthrene	120		9.1	ug/Kg		12/01/18 20:47	12/07/18 16:38	1
Anthracene	ND		9.1	ug/Kg	₩	12/01/18 20:47	12/07/18 16:38	1
Fluoranthene	220		9.1	ug/Kg	₩	12/01/18 20:47	12/07/18 16:38	1
Pyrene	160		9.1	ug/Kg		12/01/18 20:47	12/07/18 16:38	1
Benzo[a]anthracene	29		9.1	ug/Kg	₩	12/01/18 20:47	12/07/18 16:38	1
Chrysene	79		9.1	ug/Kg	☼	12/01/18 20:47	12/07/18 16:38	1
Benzo[b]fluoranthene	77	F2	9.1	ug/Kg		12/01/18 20:47	12/07/18 16:38	1
Benzo[k]fluoranthene	28		9.1	ug/Kg	₩	12/01/18 20:47	12/07/18 16:38	1
Benzo[a]pyrene	47		9.1	ug/Kg	₩	12/01/18 20:47	12/07/18 16:38	1
Indeno[1,2,3-cd]pyrene	44		9.1	ug/Kg		12/01/18 20:47	12/07/18 16:38	1
Dibenz(a,h)anthracene	ND		9.1	ug/Kg	₩	12/01/18 20:47	12/07/18 16:38	1
Benzo[g,h,i]perylene	49		9.1	ug/Kg	₩	12/01/18 20:47	12/07/18 16:38	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Terphenyl-d14	107		57 - 120			12/01/18 20:47	12/07/18 16:38	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND ND	5.5		ug/Kg	<u> </u>	12/04/18 14:42	12/06/18 17:57	1
alpha-BHC	ND	3.7		ug/Kg	☼	12/04/18 14:42	12/06/18 17:57	1
beta-BHC	ND	9.1		ug/Kg	☼	12/04/18 14:42	12/06/18 17:57	1
delta-BHC	ND	5.5		ug/Kg	₩	12/04/18 14:42	12/06/18 17:57	1
gamma-BHC (Lindane)	ND	3.7		ug/Kg	☼	12/04/18 14:42	12/06/18 17:57	1
4,4'-DDD	ND	3.7		ug/Kg	☼	12/04/18 14:42	12/06/18 17:57	1
4,4'-DDE	ND	3.7		ug/Kg		12/04/18 14:42	12/06/18 17:57	1
4,4'-DDT	ND	3.7		ug/Kg	☼	12/04/18 14:42	12/06/18 17:57	1
Dieldrin	ND	3.7		ug/Kg	≎	12/04/18 14:42	12/06/18 17:57	1

TestAmerica Seattle

Page 5 of 20

Client Sample Results

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Client Sample ID: SS-03

Date Collected: 11/23/18 11:20

Date Received: 11/26/18 09:23

Percent Solids

Percent Moisture

TestAmerica Job ID: 580-82053-1

Lab Sample ID: 580-82053-1

Matrix: Solid

Percent Solids: 54.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Endosulfan I	ND		3.7		ug/Kg	₩	12/04/18 14:42	12/06/18 17:57	1
Endosulfan II	ND		3.7		ug/Kg		12/04/18 14:42	12/06/18 17:57	1
Endosulfan sulfate	ND		3.7		ug/Kg	☼	12/04/18 14:42	12/06/18 17:57	1
Endrin	ND		3.7		ug/Kg		12/04/18 14:42	12/06/18 17:57	1
Endrin aldehyde	ND		37		ug/Kg	☼	12/04/18 14:42	12/06/18 17:57	1
Heptachlor	ND		5.5		ug/Kg	☼	12/04/18 14:42	12/06/18 17:57	1
Heptachlor epoxide	ND		5.5		ug/Kg	₽	12/04/18 14:42	12/06/18 17:57	1
Methoxychlor	ND		18		ug/Kg	≎	12/04/18 14:42	12/06/18 17:57	1
Endrin ketone	ND		3.7		ug/Kg	≎	12/04/18 14:42	12/06/18 17:57	1
Toxaphene	ND		180		ug/Kg		12/04/18 14:42	12/06/18 17:57	1
cis-Chlordane	ND		3.7		ug/Kg	☼	12/04/18 14:42	12/06/18 17:57	1
trans-Chlordane	ND		5.5		ug/Kg	₩	12/04/18 14:42	12/06/18 17:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	81		50 - 123				12/04/18 14:42	12/06/18 17:57	1
DCB Decachlorobiphenyl	93		43 - 129				12/04/18 14:42	12/06/18 17:57	1
Method: 6010B - Metals (I	CP)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	9.1		4.3		mg/Kg	₩	11/30/18 11:36	12/03/18 14:44	1
Barium	160		0.72		mg/Kg	☼	11/30/18 11:36	12/03/18 14:44	1
Cadmium	ND		1.4		mg/Kg	☼	11/30/18 11:36	12/03/18 14:44	1
Chromium	31		1.9		mg/Kg	₽	11/30/18 11:36	12/03/18 14:44	1
Lead	8.5		2.2		mg/Kg	☼	11/30/18 11:36	12/03/18 14:44	1
Selenium	ND		7.2		mg/Kg	☼	11/30/18 11:36	12/03/18 14:44	1
Silver	ND		3.6		mg/Kg	☆	11/30/18 11:36	12/03/18 14:44	1
Method: 7471A - Mercury	(CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.058		0.053		mg/Kg		12/03/18 10:39	12/03/18 20:21	1
General Chemistry									

0.1

0.1

54.5

45.5

%

%

12/03/18 09:38

12/03/18 09:38

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Method: 8151A - Herbicides (GC/MS)

Lab Sample ID: MB 580-290141/1-A **Matrix: Solid**

Analysis Batch: 290489

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 290141**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dalapon	ND		160		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
Dicamba	ND		90		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
Mecoprop	ND		90		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
MCPA	ND		90		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
Dichlorprop	ND		90		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
2,4-D	ND		90		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
Pentachlorophenol	ND		160		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
Silvex (2,4,5-TP)	ND		90		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
2,4,5-T	ND		90		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
Dinoseb	ND		160		ug/Kg		12/03/18 12:34	12/06/18 15:00	1
2,4-DB	ND		90		ug/Kg		12/03/18 12:34	12/06/18 15:00	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	110		53 - 150	12/03/18 12:34	12/06/18 15:00	1

Lab Sample ID: LCS 580-290141/2-A

Matrix: Solid

Analysis Batch: 290489

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 290141**

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dalapon	333	183		ug/Kg		55	15 - 120	
Dicamba	333	295		ug/Kg		88	36 - 134	
Mecoprop	333	342		ug/Kg		103	48 - 150	
MCPA	333	320		ug/Kg		96	51 - 150	
Dichlorprop	333	362		ug/Kg		109	47 - 150	
2,4-D	333	332		ug/Kg		100	51 ₋ 150	
Pentachlorophenol	333	340		ug/Kg		102	44 - 150	
Silvex (2,4,5-TP)	333	389		ug/Kg		117	53 - 150	
2,4,5-T	333	324		ug/Kg		97	56 - 150	
Dinoseb	333	259		ug/Kg		78	38 - 150	
2,4-DB	333	391		ug/Kg		117	47 - 150	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
2,4-Dichlorophenylacetic acid	91	53 - 150

Lab Sample ID: LCSD 580-290141/3-A

Matrix: Solid

Analysis Ratch: 290489

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Pren Batch: 290141

Alialysis Dalcil. 230403							Fieb De	ilcii. Zi	<i>3</i> 0 14 1
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dalapon	333	209		ug/Kg		63	15 - 120	13	40
Dicamba	333	321		ug/Kg		96	36 - 134	9	40
Mecoprop	333	362		ug/Kg		109	48 - 150	5	40
MCPA	333	337		ug/Kg		101	51 - 150	5	40
Dichlorprop	333	380		ug/Kg		114	47 - 150	5	40
2,4-D	333	307		ug/Kg		92	51 - 150	8	40
Pentachlorophenol	333	351		ug/Kg		105	44 - 150	3	40

TestAmerica Seattle

Page 7 of 20

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Method: 8151A - Herbicides (GC/MS) (Continued)

Lab Sample	ID: LCSD	580-290141/3-A
------------	----------	----------------

Matrix: Solid

Analysis Batch: 290489

Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA**

Prep Batch: 290141

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Silvex (2,4,5-TP)	333	379		ug/Kg		114	53 - 150	3	40
2,4,5-T	333	341		ug/Kg		102	56 - 150	5	40
Dinoseb	333	273		ug/Kg		82	38 - 150	5	40
2,4-DB	333	395		ug/Kg		119	47 - 150	1	40

LCSD LCSD

Surrogate %Recovery Qualifier Limits 97 53 - 150

2,4-Dichlorophenylacetic acid

Lab Sample ID: 580-82053-1 MS

Matrix: Solid

Analysis Batch: 290489

Client Sample ID: SS-03

Prep Type: Total/NA **Prep Batch: 290141**

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits ₩ Dalapon ND 573 42 ND ug/Kg 15 - 120 Dicamba ND 573 440 ₩ 77 ug/Kg 36 - 134 ☼ ND 87 Mecoprop 573 496 ug/Kg 48 - 150 ₩ **MCPA** ND 573 417 73 51 - 150 ug/Kg ₩ Dichlorprop ND 573 543 ug/Kg 95 47 - 150 Ö 2,4-D ND 573 457 ug/Kg 80 51 - 150 Pentachlorophenol ND 573 503 ug/Kg 88 44 - 150 Silvex (2,4,5-TP) ND 573 568 ug/Kg ∜ 99 53 - 150 2,4,5-T ND 573 493 ☼ 86 56 - 150 ug/Kg . ₩ 97 Dinoseb ND 573 556 ug/Kg 38 - 150 2,4-DB ND 573 614 ug/Kg 107 47 - 150

MS MS

Surrogate %Recovery Qualifier Limits 53 - 150 2,4-Dichlorophenylacetic acid 74

Lab Sample ID: 580-82053-1 MSD

Matrix: Solid

Analysis Batch: 290489

Client Sample ID: SS-03 Prep Type: Total/NA

Prep Batch: 290141

Alialysis Datell. 200700									i icp D	ALCII. E.	/U I T I
•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dalapon	ND		606	ND		ug/Kg	<u></u>	43	15 - 120	7	40
Dicamba	ND		606	437		ug/Kg	☼	72	36 - 134	1	40
Mecoprop	ND		606	499		ug/Kg	≎	82	48 - 150	1	40
MCPA	ND		606	468		ug/Kg	\$	77	51 - 150	11	40
Dichlorprop	ND		606	589		ug/Kg	≎	97	47 - 150	8	40
2,4-D	ND		606	494		ug/Kg	≎	82	51 - 150	8	40
Pentachlorophenol	ND		606	480		ug/Kg	₽	79	44 - 150	5	40
Silvex (2,4,5-TP)	ND		606	585		ug/Kg	≎	97	53 - 150	3	40
2,4,5-T	ND		606	492		ug/Kg	☼	81	56 - 150	0	40
Dinoseb	ND		606	569		ug/Kg		94	38 - 150	2	40
2,4-DB	ND		606	622		ug/Kg	₩	103	47 - 150	1	40

MSD MSD

Surrogate %Recovery Qualifier Limits 2,4-Dichlorophenylacetic acid 74 53 - 150

TestAmerica Seattle

Page 8 of 20

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

9

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 580-290094/1-A
Matrix: Solid
Analysis Batch: 290528

MB MB

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 290094

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
2-Methylnaphthalene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
1-Methylnaphthalene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Acenaphthylene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Acenaphthene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Fluorene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Phenanthrene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Anthracene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Fluoranthene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Pyrene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Benzo[a]anthracene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Chrysene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Benzo[b]fluoranthene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Benzo[k]fluoranthene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Benzo[a]pyrene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Indeno[1,2,3-cd]pyrene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Dibenz(a,h)anthracene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
Benzo[g,h,i]perylene	ND		5.0		ug/Kg		12/01/18 20:47	12/07/18 14:03	1
I and the second									

MB MB

 Surrogate
 %Recovery
 Qualifier
 Limits
 Prepared
 Analyzed
 Dil Fac

 Terphenyl-d14
 121
 X
 57 - 120
 12/01/18 20:47
 12/07/18 14:03
 1

Lab Sample ID: LCS 580-290094/2-A

Matrix: Solid

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 290094

Analysis Batch: 290528	Spike	LCS	LCS				Prep Batch: 290094 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Naphthalene	1000	919		ug/Kg		92	70 - 120
2-Methylnaphthalene	1000	1010		ug/Kg		101	68 - 120
1-Methylnaphthalene	1000	986		ug/Kg		99	71 - 120
Acenaphthylene	1000	1020		ug/Kg		102	68 - 120
Acenaphthene	1000	928		ug/Kg		93	68 - 120
Fluorene	1000	972		ug/Kg		97	73 - 120
Phenanthrene	1000	933		ug/Kg		93	73 - 120
Anthracene	1000	1040		ug/Kg		104	73 - 125
Fluoranthene	1000	1070		ug/Kg		107	74 - 125
Pyrene	1000	1010		ug/Kg		101	70 - 120
Benzo[a]anthracene	1000	1050		ug/Kg		105	66 - 120
Chrysene	1000	908		ug/Kg		91	69 - 120
Benzo[b]fluoranthene	1000	925		ug/Kg		92	63 - 121
Benzo[k]fluoranthene	1000	936		ug/Kg		94	63 - 123
Benzo[a]pyrene	1000	988		ug/Kg		99	72 - 124
Indeno[1,2,3-cd]pyrene	1000	878		ug/Kg		88	65 - 121
Dibenz(a,h)anthracene	1000	970		ug/Kg		97	70 - 125
Benzo[g,h,i]perylene	1000	960		ug/Kg		96	63 - 120

TestAmerica Seattle

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 580-290094/2-A

Lab Sample ID: 580-82053-1 MS

Matrix: Solid

Matrix: Solid

Analyte

Naphthalene

Analysis Batch: 290528

Analysis Batch: 290528

LCS LCS

Sample Sample

13

77 F2

Result Qualifier

%Recovery Qualifier Surrogate Limits Terphenyl-d14 57 - 120 109

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 290094

Unit

ug/Kg

ug/Kg

D ₩

₩

∜

☼

. .

₩

71

83

87

92

91

Client Sample ID: SS-03 Prep Type: Total/NA

Prep Batch: 290094 %Rec.

%Rec Limits 89 70 - 120 97 68 - 120

63 - 121

63 - 123

72 - 124

65 - 121

70 - 125

₩ ND 1780 1730 2-Methylnaphthalene ug/Kg ND Ö 1-Methylnaphthalene 1780 1700 ug/Kg 95 71 - 120₽ Acenaphthylene 12 1780 1780 99 68 - 120 ug/Kg ☼ Acenaphthene ND 1780 1610 ug/Kg 90 68 - 120 Fluorene ND 1780 1670 ug/Kg ₩ 93 73 - 120 ₩ 92 Phenanthrene 120 1780 1760 ug/Kg 73 - 120₩ Anthracene ND 1780 1870 105 73 - 125 ug/Kg ☼ 74 - 125 Fluoranthene 220 1780 2110 106 ug/Kg 160 1780 2000 ₩ 103 70 - 120 Pyrene ug/Kg ₩ 108 Benzo[a]anthracene 29 1780 1950 ug/Kg 66 - 120Ö Chrysene 79 1780 1620 ug/Kg 87 69 - 120

1780

Spike

Added

1780

Benzo[k]fluoranthene 28 1780 1500 ug/Kg 47 1780 1600 Benzo[a]pyrene ug/Kg Indeno[1,2,3-cd]pyrene 44 1780 1690 ug/Kg Dibenz(a,h)anthracene ND 1780 1630 ug/Kg Benzo[g,h,i]perylene 49 1780 1640

₩ ug/Kg 89 63 - 120 MS MS

1350

MS MS

1600

Result Qualifier

Surrogate %Recovery Qualifier Limits Terphenyl-d14 103 57 - 120

Lab Sample ID: 580-82053-1 MSD

Matrix: Solid

Benzo[b]fluoranthene

Analysis Batch: 290528

Client Sample ID: SS-03 Prep Type: Total/NA **Prep Batch: 290094**

Alluly 313 Butolli 200020									i icp be		
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	13		1770	1540		ug/Kg	<u> </u>	86	70 - 120	3	12
2-Methylnaphthalene	ND		1770	1670		ug/Kg	☼	94	68 - 120	3	12
1-Methylnaphthalene	ND		1770	1640		ug/Kg	☼	92	71 - 120	3	11
Acenaphthylene	12		1770	1750		ug/Kg	₩.	98	68 - 120	1	12
Acenaphthene	ND		1770	1610		ug/Kg	☼	90	68 - 120	0	12
Fluorene	ND		1770	1650		ug/Kg	₩	93	73 - 120	1	13
Phenanthrene	120		1770	1710		ug/Kg	₩.	89	73 - 120	3	11
Anthracene	ND		1770	1840		ug/Kg	☼	103	73 - 125	2	12
Fluoranthene	220		1770	2050		ug/Kg	☼	103	74 - 125	3	13
Pyrene	160		1770	1960		ug/Kg	₩.	101	70 - 120	2	12
Benzo[a]anthracene	29		1770	1890		ug/Kg	☼	105	66 - 120	3	14
Chrysene	79		1770	1580		ug/Kg	☼	85	69 - 120	3	10
Benzo[b]fluoranthene	77	F2	1770	1520	F2	ug/Kg	₩.	81	63 - 121	12	10
Benzo[k]fluoranthene	28		1770	1340		ug/Kg	☼	74	63 - 123	12	15

TestAmerica Seattle

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: 580-82053-1 MSD

Matrix: Solid

Analysis Batch: 290528

Client Sample ID: SS-03 **Prep Type: Total/NA**

Prep Batch: 290094 it

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzo[a]pyrene	47		1770	1590	-	ug/Kg	\	87	72 - 124	0	12
Indeno[1,2,3-cd]pyrene	44		1770	1660		ug/Kg	₩.	91	65 - 121	2	15
Dibenz(a,h)anthracene	ND		1770	1620		ug/Kg	☼	91	70 - 125	1	13
Benzo[g,h,i]perylene	49		1770	1610		ug/Kg	₩	88	63 - 120	2	14
	Men	MCD									

Surrogate Limits %Recovery Qualifier Terphenyl-d14 102 57 - 120

Method: 8081A - Organochlorine Pesticides (GC)

Lab Sample ID: MB 580-290263/1-A

Matrix: Solid

Analysis Batch: 290437

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 290263

Allaryold Batolii 200-101								. Top Batom	
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		3.0		ug/Kg		12/04/18 14:42	12/06/18 14:14	1
alpha-BHC	ND		2.0		ug/Kg		12/04/18 14:42	12/06/18 14:14	1
beta-BHC	ND		5.0		ug/Kg		12/04/18 14:42	12/06/18 14:14	1
delta-BHC	ND		3.0		ug/Kg		12/04/18 14:42	12/06/18 14:14	1
gamma-BHC (Lindane)	ND		2.0		ug/Kg		12/04/18 14:42	12/06/18 14:14	1
4,4'-DDD	ND		2.0		ug/Kg		12/04/18 14:42	12/06/18 14:14	1
4,4'-DDE	ND		2.0		ug/Kg		12/04/18 14:42	12/06/18 14:14	1
4,4'-DDT	ND		2.0		ug/Kg		12/04/18 14:42	12/06/18 14:14	1
Dieldrin	ND		2.0		ug/Kg		12/04/18 14:42	12/06/18 14:14	1
Endosulfan I	ND		2.0		ug/Kg		12/04/18 14:42	12/06/18 14:14	1
Endosulfan II	ND		2.0		ug/Kg		12/04/18 14:42	12/06/18 14:14	1
Endosulfan sulfate	ND		2.0		ug/Kg		12/04/18 14:42	12/06/18 14:14	1
Endrin	ND		2.0		ug/Kg		12/04/18 14:42	12/06/18 14:14	1
Endrin aldehyde	ND		20		ug/Kg		12/04/18 14:42	12/06/18 14:14	1
Heptachlor	ND		3.0		ug/Kg		12/04/18 14:42	12/06/18 14:14	1
Heptachlor epoxide	ND		3.0		ug/Kg		12/04/18 14:42	12/06/18 14:14	1
Methoxychlor	ND		10		ug/Kg		12/04/18 14:42	12/06/18 14:14	1
Endrin ketone	ND		2.0		ug/Kg		12/04/18 14:42	12/06/18 14:14	1
Toxaphene	ND		100		ug/Kg		12/04/18 14:42	12/06/18 14:14	1
cis-Chlordane	ND		2.0		ug/Kg		12/04/18 14:42	12/06/18 14:14	1
trans-Chlordane	ND		3.0		ug/Kg		12/04/18 14:42	12/06/18 14:14	1

MB MB Surrogate %Recovery

Qualifier Limits Tetrachloro-m-xylene 89 50 - 123 DCB Decachlorobiphenyl 97 43 - 129

Prepared Analyzed Dil Fac 12/04/18 14:42 12/06/18 14:14 12/04/18 14:42 12/06/18 14:14

Lab Sample ID: LCS 580-290263/2-A

Matrix: Solid

Analysis Batch: 290437

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 290263 %Rec.

Spike LCS LCS Analyte Added Result Qualifier Unit D %Rec Limits Aldrin 20.0 18.4 ug/Kg 92 56 - 121

TestAmerica Seattle

Page 11 of 20

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Lab Sample ID: LCS 580-290263/2-A

Matrix: Solid

Analysis Batch: 290437

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 290263

7 maryolo Batom 200-101	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
alpha-BHC	20.0	17.9		ug/Kg		90	62 - 120
beta-BHC	20.0	17.2		ug/Kg		86	62 _ 120
delta-BHC	20.0	16.8		ug/Kg		84	53 - 124
gamma-BHC (Lindane)	20.0	17.1		ug/Kg		85	55 - 120
4,4'-DDD	20.0	16.4		ug/Kg		82	61 - 122
4,4'-DDE	20.0	17.0		ug/Kg		85	53 - 124
4,4'-DDT	20.0	19.1		ug/Kg		95	57 ₋ 137
Dieldrin	20.0	19.0		ug/Kg		95	63 - 121
Endosulfan I	20.0	18.3		ug/Kg		92	64 - 121
Endosulfan II	20.0	18.2		ug/Kg		91	37 - 139
Endosulfan sulfate	20.0	18.3		ug/Kg		92	63 - 120
Endrin	20.0	21.9		ug/Kg		110	70 - 127
Endrin aldehyde	20.0	15.9	J	ug/Kg		80	36 - 150
Heptachlor	20.0	19.6		ug/Kg		98	64 - 124
Heptachlor epoxide	20.0	18.6		ug/Kg		93	62 - 120
Methoxychlor	20.0	19.3		ug/Kg		96	61 - 130
Endrin ketone	20.0	18.8		ug/Kg		94	56 - 120
cis-Chlordane	20.0	18.1		ug/Kg		91	62 - 120
trans-Chlordane	20.0	19.1		ug/Kg		96	60 - 120

LCS LCS

Surrogate	%Recovery Q	ualifier	Limits
Tetrachloro-m-xylene	82		50 - 123
DCB Decachlorobiphenyl	93		43 - 129

Lab Sample ID: LCS 580-290263/4-A

Lab Sample ID: LCSD 580-290263/3-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 290437

Analysis Batch: 290437

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 290263

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Toxaphene 500 505 ug/Kg 101 57 - 126

LCS LCS

Surrogate	%Recovery Qualifier	Limits
Tetrachloro-m-xylene	86	50 - 123
DCB Decachlorobiphenyl	93	43 - 129

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 290263

Spike LCSD LCSD RPD %Rec. **Analyte** Added Result Qualifier Unit D %Rec Limits RPD Limit 20.0 Aldrin 19.7 ug/Kg 98 56 - 121 7 18 alpha-BHC 20.0 19.1 ug/Kg 96 62 - 120 6 15 beta-BHC 20.0 19.4 ug/Kg 97 62 - 12012 19 delta-BHC 20.0 17.9 89 53 - 124 6 ug/Kg 18 gamma-BHC (Lindane) 20.0 18.4 ug/Kg 92 55 - 120 7 18 4,4'-DDD 20.0 96 61 - 122 19.2 ug/Kg 16 18 4,4'-DDE 20.0 98 53 - 124 18 19.5 ug/Kg 14 4,4'-DDT 20.0 101 57 - 137 20.2 ug/Kg 6 23

TestAmerica Seattle

12/10/2018

Page 12 of 20

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

3

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCSD 580-290263/3-A

Matrix: Solid

Analysis Batch: 290437

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 290263

						i icp Datoii. 2				
Spike	LCSD	LCSD				%Rec.		RPD		
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit		
20.0	20.4	-	ug/Kg		102	63 - 121	7	19		
20.0	20.5		ug/Kg		103	64 - 121	11	20		
20.0	19.8		ug/Kg		99	37 - 139	8	18		
20.0	19.4		ug/Kg		97	63 - 120	6	19		
20.0	23.1		ug/Kg		115	70 - 127	5	20		
20.0	17.7	J	ug/Kg		88	36 - 150	10	24		
20.0	20.3		ug/Kg		101	64 - 124	3	17		
20.0	19.7		ug/Kg		99	62 - 120	6	20		
20.0	20.6		ug/Kg		103	61 - 130	7	20		
20.0	20.0		ug/Kg		100	56 - 120	6	18		
20.0	19.9		ug/Kg		100	62 - 120	9	18		
20.0	20.6		ug/Kg		103	60 - 120	8	19		
	Added 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	Added Result 20.0 20.4 20.0 20.5 20.0 19.8 20.0 19.4 20.0 23.1 20.0 17.7 20.0 20.3 20.0 19.7 20.0 20.6 20.0 20.0 20.0 19.9	Added Result Qualifier 20.0 20.4 20.4 20.0 20.5 20.5 20.0 19.8 20.0 20.0 23.1 20.0 20.0 17.7 J 20.0 20.3 20.3 20.0 19.7 20.6 20.0 20.0 20.0 20.0 19.9 19.9	Added Result Qualifier Unit 20.0 20.4 ug/Kg 20.0 20.5 ug/Kg 20.0 19.8 ug/Kg 20.0 19.4 ug/Kg 20.0 23.1 ug/Kg 20.0 17.7 J ug/Kg 20.0 20.3 ug/Kg 20.0 19.7 ug/Kg 20.0 20.6 ug/Kg 20.0 20.0 ug/Kg 20.0 19.9 ug/Kg	Added Result Qualifier Unit D 20.0 20.4 ug/Kg ug/Kg 20.0 20.5 ug/Kg 20.0 19.8 ug/Kg 20.0 19.4 ug/Kg 20.0 23.1 ug/Kg 20.0 17.7 J ug/Kg 20.0 20.3 ug/Kg 20.0 19.7 ug/Kg 20.0 20.6 ug/Kg 20.0 20.0 ug/Kg 20.0 19.9 ug/Kg	Added Result Qualifier Unit D %Rec 20.0 20.4 ug/Kg 102 20.0 20.5 ug/Kg 103 20.0 19.8 ug/Kg 99 20.0 19.4 ug/Kg 97 20.0 23.1 ug/Kg 115 20.0 17.7 J ug/Kg 88 20.0 20.3 ug/Kg 101 20.0 19.7 ug/Kg 99 20.0 20.6 ug/Kg 103 20.0 20.0 ug/Kg 100 20.0 19.9 ug/Kg 100	Spike LCSD LCSD WRec. MRec. Added Result Qualifier Unit D %Rec. Limits 20.0 20.4 ug/Kg 102 63 - 121 20.0 20.5 ug/Kg 103 64 - 121 20.0 19.8 ug/Kg 99 37 - 139 20.0 19.4 ug/Kg 97 63 - 120 20.0 23.1 ug/Kg 115 70 - 127 20.0 17.7 J ug/Kg 88 36 - 150 20.0 20.3 ug/Kg 101 64 - 124 20.0 19.7 ug/Kg 99 62 - 120 20.0 20.6 ug/Kg 103 61 - 130 20.0 20.0 ug/Kg 100 56 - 120 20.0 19.9 ug/Kg 100 62 - 120	Added Result Qualifier Unit D %Rec Limits RPD 20.0 20.4 ug/Kg 102 63 - 121 7 20.0 20.5 ug/Kg 103 64 - 121 11 20.0 19.8 ug/Kg 99 37 - 139 8 20.0 19.4 ug/Kg 97 63 - 120 6 20.0 23.1 ug/Kg 115 70 - 127 5 20.0 17.7 J ug/Kg 88 36 - 150 10 20.0 20.3 ug/Kg 101 64 - 124 3 20.0 19.7 ug/Kg 99 62 - 120 6 20.0 20.6 ug/Kg 103 61 - 130 7 20.0 20.0 ug/Kg 100 56 - 120 6 20.0 19.9 ug/Kg 100 62 - 120 9		

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
Tetrachloro-m-xylene	93	50 - 123
DCB Decachlorobiphenyl	105	43 - 129

Lab Sample ID: LCSD 580-290263/5-A

Matrix: Solid

Analysis Batch: 290437

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 290263

Spike LCSD LCSD %Rec. **RPD** Analyte Added Result Qualifier Unit Limits RPD Limit D %Rec 57 - 126 500 Toxaphene 502 ug/Kg 100

LCSD LCSD

 Surrogate
 %Recovery
 Qualifier
 Limits

 Tetrachloro-m-xylene
 88
 50 - 123

 DCB Decachlorobiphenyl
 96
 43 - 129

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 580-290025/19-A

Matrix: Solid

Analysis Batch: 290167

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 290025

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		3.0		mg/Kg		11/30/18 11:36	12/03/18 14:01	1
Barium	ND		0.50		mg/Kg		11/30/18 11:36	12/03/18 14:01	1
Cadmium	ND		1.0		mg/Kg		11/30/18 11:36	12/03/18 14:01	1
Chromium	ND		1.3		mg/Kg		11/30/18 11:36	12/03/18 14:01	1
Lead	ND		1.5		mg/Kg		11/30/18 11:36	12/03/18 14:01	1
Selenium	ND		5.0		mg/Kg		11/30/18 11:36	12/03/18 14:01	1
Silver	ND		2.5		mg/Kg		11/30/18 11:36	12/03/18 14:01	1

TestAmerica Seattle

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge

Lab Sample ID: LCS 580-290025/20-A

Method: 6010B - Metals (ICP) (Continued)

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 290167	Spike	LCS	LCS				Prep Batch: 290029
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	50.0	53.9		mg/Kg		108	80 - 120
Barium	50.0	57.3		mg/Kg		115	80 - 120
Cadmium	50.0	50.0		mg/Kg		100	80 - 120
Chromium	50.0	54.3		mg/Kg		109	80 - 120
Lead	50.0	54.2		mg/Kg		108	80 - 120
Selenium	50.0	51.6		mg/Kg		103	80 - 120
Silver	50.0	53.6		mg/Kg		107	80 - 120

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Lab Sample ID: LCSD 580-290025/21-A

Matrix: Solid

Prep Type: Total/NA

Analysis Batch: 290167							Prep Ba	itch: 29	90025
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	50.0	53.4		mg/Kg		107	80 - 120	1	20
Barium	50.0	56.6		mg/Kg		113	80 - 120	1	20
Cadmium	50.0	49.5		mg/Kg		99	80 - 120	1	20
Chromium	50.0	53.8		mg/Kg		108	80 - 120	1	20
Lead	50.0	53.8		mg/Kg		108	80 - 120	1	20
Selenium	50.0	50.4		mg/Kg		101	80 - 120	2	20
Silver	50.0	53.6		mg/Kg		107	80 - 120	0	20

Method: 7471A - Mercury (CVAA)

Lab Sample ID: MB 580-290118/22-A **Client Sample ID: Method Blank**

Matrix: Solid

Analysis Batch: 290200 MB MB Prep Type: Total/NA Prep Batch: 290118

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.030	mg/Kg	_	12/03/18 10:39	12/03/18 19:32	1

Lab Sample ID: LCS 580-290118/23-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 290200** Prep Batch: 290118 Spike LCS LCS %Rec. Added Result Qualifier Unit Analyte D %Rec

Mercury	0.167	0.166	mg/Kg	99	80 - 120
Lab Sample ID: LCSD 580-290118/24-A Matrix: Solid			Client Sample	e ID: Lab	Control Sample Dup Prep Type: Total/NA
Analysis Batch: 290200					Prep Batch: 290118

Spike LCSD LCSD %Rec. **RPD** Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Mercury 0.167 0.153 92 80 - 120 mg/Kg

Limits

Lab Chronicle

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge TestAmerica Job ID: 580-82053-1

Lab Sample ID: 580-82053-1

Matrix: Solid

Date Collected: 11/23/18 11:20 Date Received: 11/26/18 09:23

Client Sample ID: SS-03

Batch Batch Dilution Batch Prepared **Prep Type** Method **Factor** Number or Analyzed Type Run Analyst Lab TAL SEA Total/NA Analysis D 2216 290114 12/03/18 09:38 BAH

Client Sample ID: SS-03 Lab Sample ID: 580-82053-1

Date Collected: 11/23/18 11:20 Matrix: Solid

Date Received: 11/26/18 09:23 Percent Solids: 54.5

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8151A			290141	12/03/18 12:34	BAH	TAL SEA
Total/NA	Analysis	8151A		1	290489	12/06/18 18:26	KFS	TAL SEA
Total/NA	Prep	3546			290094	12/01/18 20:47	BAH	TAL SEA
Total/NA	Analysis	8270C SIM		1	290528	12/07/18 16:38	DSO	TAL SEA
Total/NA	Prep	3546			290263	12/04/18 14:42	BAH	TAL SEA
Total/NA	Analysis	8081A		1	290437	12/06/18 17:57	TL1	TAL SEA
Total/NA	Prep	3050B			290025	11/30/18 11:36	T1H	TAL SEA
Total/NA	Analysis	6010B		1	290167	12/03/18 14:44	HJM	TAL SEA
Total/NA	Prep	7471A			290118	12/03/18 10:39	JKM	TAL SEA
Total/NA	Analysis	7471A		1	290200	12/03/18 20:21	T1H	TAL SEA

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Accreditation/Certification Summary

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge TestAmerica Job ID: 580-82053-1

Laboratory: TestAmerica Seattle

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska (UST)	State Program	10	17-024	01-19-19
ANAB	DoD ELAP		L2236	01-19-19
ANAB	ISO/IEC 17025		L2236	01-19-19
California	State Program	9	2901	11-05-19
Montana (UST)	State Program	8	N/A	04-30-20
Nevada	State Program	9	WA000502019-1	07-31-19
Oregon	NELAP	10	WA100007	11-05-19
US Fish & Wildlife	Federal		LE058448-0	07-31-19
USDA	Federal		P330-14-00126	02-10-20
Washington	State Program	10	C553	02-17-19

4

5

6

8

9

10

Sample Summary

Client: Cascade Earth Sciences Inc. Project/Site: Shimanek Covered Bridge TestAmerica Job ID: 580-82053-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-82053-1	SS-03	Solid	11/23/18 11:20	11/26/18 09:23

9

Л

C

8

9

0180 81/92/11 Date: 11/23/18 Indude Prg (of (Notes Temp= 11.5°C Sork Ook MANULUS X MUTUH MANUS X MUTUH X X MUTU Seen O'Counch (541.812-6624 Samples Irssia Pendur Received by West Contids J. Penetur Test America Analysis 37, (200 Date W23/18 Marker CHAIN OF CUSTODY Soil 2511 Pacific Blue SW Albany, OR 47521 Shimanel Coursed Broken 11 (23/18 Dite 580-82053 Chain of Custody Sample ID 58-10 3 1 ddress.

CHAIN OF CUSTODY,

Clark: CES

Address. 3511 Pacific Blue SW

Albery, or 97321

Project: Shirarek Covered Bridge

Sample I) 55-03

Date Time

Matrix

11/23/18 1120 Soil

Client Condid: J. Penetur

541-812-6621

Pige (of 1

Date: 11/23/18

Sampler. Jessica Penetur

Analysis

Barren

Temp = 11.5°C

Jessie Duste Jessica Pereter 1/23/18

Jessie Dicomen 1/26/18

Jessie Dicomen 1/26/18

Ting Received by
1200 Soon O'Conneil Jac 11/26/18 0810

1700 Kungthle TASED 11-27-18 1020

4:5.2

Login Sample Receipt Checklist

Client: Cascade Earth Sciences Inc. Job Number: 580-82053-1

Login Number: 82053 List Source: TestAmerica Seattle

List Number: 1

Creator: O'Connell, Jason I

Creator: O Conneil, Jason I		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	False	Cooler temperature outside required temperature criteria.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	False	Refer to Job Narrative for details.
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4

8

9

10