

SECTION A-A

MAILBOX SERVICE TURNOUT

MAILBOX SERVICE TURNOUT AFTER APPROACH

MAILBOX SERVICE TURNOUT BEFORE APPROACH

CURBED SECTION

NON-CURBED SECTION

PLACEMENT

SUPPORT SPACING

NEWSPAPER BOX MOUNTING DETAIL

NEWSPAPER BOX MOUNTING BRACKET DETAIL (14 ga.)

General notes for all details on this sheet:

1. All holes in the tube support frame are to be predrilled by the manufacturer
2. Other proprietary products available as listed in ODOT's QPL.
3. For mailbox support details, see Std. Dwg. RDI 100 .
4. For approach details, see Std. Dwg. RD715.
5. Mounting height (H) shall be $42^{\prime \prime}$ nominal, measured from vehicle driving surface.
6. See project plans for details not shown.

Calc. Book no. _ _ _ N/A	SDR DATE _------25-JUL-2017	
The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without consulting a Registered Professional Engineer.	NOTE:	All material and workmanship shall be in accordance with the current Oregon Standard Specifications
	OREGON STANDARD DRAWINGS	
	MAILBOX INSTALLATION	
	DATE	REVSION DESCRIPTION

General notes for all detalls on this sheet:

1. Meter to be centered and set plumb inside meter box
2. Manufactured meter setter may be used for $3 / 4$ "to 2 " services.
3. Set meter box 4" minimum behind curb or sidewalk.
4. Meter boxes set in driveways shall have traffic lids.
5. See project plans for meter box size.
6. See project plans for details not shown.

CALC. Book no. _ _ N/A	SDR DATE - - - - - - 25-JUL-2017	
	NO	All material and workmanship shall be in accordance with the current Oregon Standard Specifications
The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be		REGON STANDARD DRAWINGS 3/4" TO 2" ATER SERVICE CONNECTION 2021
used without consulting a	DATE	Revision Description
Registered Professional En-		
gineer.		

1. All existing AC or PCC pavement shall be sawcut prior to repaving,
2. Concrete pavement shall be replaced with concrete to a minimum thickness of $8^{\prime \prime}$
or to the thickness of removed pavement, whichever is greater.
3. For joining new concrete to existing concrete, see contract plans for sepecific
details.
. Place AC mix minimum thkn. of 6 " or the thkn. of the removed pavement, whichever is greater. Compact as specified.

CALC. Book no. _ _ N/A	SOR DATE _-_-_-_12-JUUN-2008	
The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without consulting a Registered Professional Engineer.	NOTE:	All material and workmanship shall be in accordance with the current Oregon Standard Specifications
		EGON STANDARD DRAWINGS
		STREET CUT
		2021
	DATE	REVISION DESCRIPTION

CONNECTION OF RIGID PIPE TO STRUCTURE

$\square_{\text {Sump shown }}$
(See general note 1)
SECTION D-D

- Sump shown

SECTION C-C

PLAN
CONNECTION OF FLEXIBLE PIPE TO STRUCTURE

General notes for all detalls on this sheet:

1. See Std. Dwgs. RD364, RD365, and RD366 for inlet details not shown.
2. See appropriate standard drawings or special project details for other similar structures.
3. Location, elevation, diameter, slope, and number of pipe(s) varies, see project plans.
4. Max. pipe diameter varies with pipe material
5. All connecting pipes shall have a tracer wire, or approved alternate.

See Std. Dwg. RD336 for tracer wire details.
6. When rigid pipe is used, the connecting pipe shall have a flexible, gasketted and
unrestrained joint within 18 " of manhole wall. Joint type varies with manufacture
7. When flexible pipe is used, install resilient connectors conforming to requirements of ASTM C923.
8. Pipe zone varies, see Std. Dwg. RD300.

SECTION B-B

PRECAST MANHOLE BASE

CALC. Book no. _ _ N/A	SDR DATE _-_-_- 14-JUL-2014	
The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without consulting a Registered Professional Engineer.		All material and workmanship shall be in accordance with the current oregon Standard Specifications
		STANDARD MANHOLE BASE SECTION
	DATE	REVSION DESCRIPTION

SECTION B-B

SECTION A-A

PLAN
CONNECTION OF RIGID PIPE TO MANHOLE

PLAN
CONNECTION OF FLEXIBLE PIPE TO MANHOLE

GENERAL NOTES FOR ALL DETAILS ON THIS SHEET:

1. All precast sections shall conform to requirements of ASTM C478.
2. Manhole base sections may be precast or cast-in-place
3. All concrete shall be commercial grade concrete.
4. Location, elevation, diameter, slope, and number of pipe(s) varies, see project plans.
5. Max. pipe diameter varies with pipe material.
6. All connecting pipes shall have a tracer wire, or approved alternate. See Std Dwg. RD336 for tracer wire details.
7. Invert channels shall be constructed to provide smooth slopes and radii to outlet pipe
B. When rigid pipe is used, the connecting pipe shall have a flexible, gasketted and unrestrained joint within $18^{\prime \prime}$ of manhole wall. Joint type varies with manufacturer.
8. When flexible pipe is used, install resilient connectors conforming to requirements of ASTM C923.
9. See Std. Dwgs. RD335, RD336, and RD338 for details not shown.
10. See Std. Dwg. RD336 for manhole steps details.
11. See Std. Dwg. RD342 for shallow manholes.
12. See Std. Dwg. RD344 for manhole base section
13. See Std. Dwg. RD356 for manhole covers and frames, manhole adjustment rings, etc.
14. Pipe zone varies, see Std. Dwg. RD300.

CAST IRON TAMPERPROOF \& WATERTIGHT COVER (Frames available in standard or suburban pattern)

COVER PLAN

COVER SECTION

CAST IRON SUBURBAN MANHOLE COVER \& FRAME For use on local streets only, as specified

NOTE:
3 required, equally spaced, $1 / 2 \times 1 / 2 / 2$ pentagonal or hexagonal head, bronze or stainless stee. Instal frame so that one bolt boss is located over the manhole steps (See general note 8).

BOLT-DOWN (FOR TAMPERPROOF AND WATERTIGHT)

DETAIL "A"

Std. depths $1 / 2{ }^{\prime \prime}, 2^{\prime \prime}, 21 / 2{ }^{\prime \prime}$ \&
Matl. to be grey cast iron ASTM A 48,
Class 35 B. Tolerance on non-machin
Class 35 . Tolerance on non-machined
surfaces to be 0.06 , see general note 6

SECTION C-C

PLAN
MANHOLE ADJUSTMENT RING For use with Standard Mane

Cover \& frame to be machined

SECTION A-A

${ }^{6 \prime \prime}$ min. diameter cover is required for manholes with depths of 20^{\prime} or greater. (See general note 4)

NOTE:
Coat outside of frame with asphalt,
where frame is to be placed in
pvmt., conc. gutter, or walk.
PLAN
STANDARD MANHOLE COVER \& FRAME

SECTION B-B
 with Standard Manhole
(See general note 7)

PLAN

GENERAL NOTES FOR ALL DETAILS ON THIS SHEET:

1. Tamperproof covers required on sanitary or storm drain manhole where located in pedestrian ways or easement areas. Covers for sanitary manholes shall have Watertight covers required if located where cover may be submerged (no holes)
2. Covers and frames shall be stamped with manufacturer's initials, heat number an point of origin
3. See Std. Dwg. RD336 for manhole steps.
4. See Std. Dwg. RD360 for manhole frame adjustment.
5. See ODOT's QPL for alternate manhole adjustment rings.
6. Manhole grate allowed only in locations not subject to bicycle or pedestrian use.
7. See ODOT's QPL for alternate bolt-down product

CALC. Book No. _ _N/A

The selection and use of this Standard Drawing, while de signed in accordance with generally accepted engineer ing principles and practices, is the sole responsibility of the user and should not be used without consulting a gineer.

MANHOLE COVERS AND FRAMES

PLAN
general notes for all details on this sheet:

1. Grates shall be bicycle-safe.
2. Precast concrete inlets may be used when specified or approved
3. Precast concrete inlets may be used when specified or approved.
All precast inlets shall conform to requirements of ASTM C913.
4. Anchor vertical leg of inlet pipe if not a glued joint.
5. See Std. Dwg. RD336 for tracer wire details.
6. All reinforcement shall be 2 " clear of nearest face of conc., unless otherwise shown.
7. Max. connecting pipe diameter varies with pipe material.
8. All concrete shall be commercial grade concrete.
9. See Std. Dwg. RD339 for pipe to structure connections.
10. Location, elevation, diameter, slope, and number of pipe(s) varies, see project plans.

CALC. Book no. _ _ N/A	SDR DATE _-_-_- - 14-JUL-2014	
The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without consulting a Registered Professional Engineer.		All material and workmanship shall be in accordance with the carrent oregon standard seciflications
		REGON STANDARD DRAWINGS AREA DRAINAGE BASIN OR FIELD INLET 2021
	DATE	REVSION DESCRIPTION

PIPE	CORRUGATED HDPE	
DIAMETER (Inches)	MINIMUM COVER (Feet)	MAXIMUM COVER (Feet)
12	2.0	29
15	2.0	30
18	2.0	27
24	2.0	24
30	2.0	21
36	2.0	23
42	2.0	22
48	2.0	22
60	2.5	21

General notes for all tables on this sheet:

1. Maximum height of cover is greatest vertical distance from top of pipe to finish grade.
2. Minimum height of cover is least vertical distance from top of pipe to subgrade.
3. For ODOT, pipes with maximum cover greater than those shown in the Tables shall be approved by the Senior Standards Enginee
4. For multiple pipe installations, see Std. Dwg. RD300.
5. Heavy solid line denotes boundary between minimum cover requirements.
6. Open ends of pipes normally require a site specific design, and may require special treatment (sloped ends, culvert embankment protection, paved end slopes, safety end sections, or other measures).
See special

CALC. Book no. _ _ RDO7-02	SOR DATE _- - - - _ 13-JUL-2011	
The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without consulting a Registered Professional Engineer.	NOTE:	All material and workmanship shall be in accordance with the current Oregon Standard Specifications
	OREGON STANDARD DRAWINGS FILL HEIGHT TABLE FOR CORRUGATED HDPE PIPE	
	DATE	EvSION DESCRPTITON

SECTION THRU RAIL ELEMENT

THRIE BEAM BACK-UP PLATE (For detail not shown, see "Section Thru Rail Element")

THRIE BEAM SPLICE

STEEL POST ASSEMBLY

General notes for all detalls on this sheet 1. See appropriate guardrail standard drawing(s) for
details not shown. details not shown.
2. Lap guardrail in direction of adjacent traffic
3. Hole layout per manufacturer with appropriate post
4. Final paved surfacing to extend to face of post. Rail height measured from final paved surface at face
5. Wood block shall be toe-nailed to the post with 2 - 16d galvanized nails in top of block to prevent block rotation
6. Wood blocks shown. Blocks of an approved alternate material may be used. See ODOT's QPL
7. All posts for guardrail run shall be of the same type: wood or steel.
8. When required by the plans, nested thrie beam post shall be 8×8 wood or $\mathbf{W} 6 \times 9$ steel.

TYPICAL SECTION
(Steel post shown)

CALC. Book no. _ _ N/A	SDR DATE _ _ _ _- _ 13 -JAN-2020	
The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without consulting a Registered Professional Engineer.	NOTE:	All material and workmanship shall be in accordance with the current Oregon Standard Specifications
	OREGON STANDARD DRAWINGS	
	THRIE BEAM GUARDRAIL	
	2021	
	DATE	ReVISION DEECRIPTIO

$$
1 ⁄ 4 \text { POST SPACING }
$$

(12'-6" section shown)

* See general note 4

SYMMETRICAL THRIE BEAM TRANSITION ELEMENT

TYPICAL THRIE BEAM TRANSITION ELEMENT

```
General notes for all detalls on this sheet:
```

1. See appropriate guardrail standard drawing(s) for details not shown
2. See appropriate bridge standard drawing(s) for transition guardrail detail and installation limits at bridge ends.
3. All rail sections shall be lapped in the direction of adjacent traffic.
4. Slot layout per manufacturer with appropriate post and block.

CALC. Book no. _ _ N/A	SOR DATE _ _ _ _ _ 13 JJAN-2020	
The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without consulting a Registered Professional Engineer.	NOTE:	All material and workmanship shall be in accordance with the current oregon Standard Specifications
	OREGON STANDARD DRAWINGS THRIE BEAM GUARDRAIL TRANSITION 2021	
	DATE	REVSION DESCRPTITION

5/8" DIA. RECESSED HEX NUT

ALTERNATIVE No. 1

ALTERNATIVE No. 2
5/8" GUARDRAIL POST/SPICE BOLT (BUTTON HEADED)

RADIUS IDENTIFICATION PLATE

Radius identification
Radius identificatio
plate (See detail)

SNOW LOAD SNOW LOAD (b) POST WASHER RAIL WASHER Use in area of heavy snow, as directed by the engineer
(See general note 6)

PLAN

RADIUS IDENTIFICATION PLATE MOUNTING DETAIL (See general note 5)

PLAIN WASHER ${ }^{\text {® }}$ Use on back of post.
general notes for all detalls on this sheet:
. See appropriate guardrail standard drawing(s) for details not shown.
2. For details of guardrail connections to structural handrails, see special details or Standard Drawings as called for on plans.
All indicated welds shall attain the full strength of the section welded.
4. Radius dimensions, in feet to the nearest 0.5 foot, shall be placed on the plate with a raised weld bead replacing the letters "HHH",
shown on the Radius Identification Plate detail. Digits shall be $1 / 1 / 2 \mathrm{~min}$. height and $3 / 4 / 4$ max. width. Plate shall be galvanized after placement of digits.
5. The guardrail radius identification plate is to be mounted on the
back side of the rail element with the lowest splice bolt nearest back side of the rail element with
the P.C. of the guardrail radius.
6. When required by the plans, a Snow Load Post Washer shall be used on the backside of the post and a Snow Load Rail Washer shall be placed rail element face Snow Load Rail Washers shall not be installed on terminals.

SUPPLEMENTARY NOTES

(a) Not required if Snow Load Post washer option is used.
(b) Use rectangular Snow Load Rail washer under bolt head and nut on Type C End Piece as shown.
C Furnished \& installed by structure contractor when shown on structure plan (d) $6^{6 \prime}$ min. penetration into concrete slabs other than bridge decks. Cast in place or core and install using approved resin bonding system.

CALC. Book no. _ _ N/A	SDR DATE ------ 13-JAN-2020
	NOTE: All material and workmanship shall be in accordance with the current Oregon Standard Specifications
The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineer-	OREGON STANDARD DRAWINGS MIDWEST GUARDRAIL SYSTEM STANDARD HARDWARE

STANDARD HARDWARE
 the user and should not be used without consulting a Registered Professional Engineer.

Provide compacted backfill
adjacent to curb and sidewalk

TYPICAL SETBACK SIDEWALK CROSS SECTION
$E=$ curb exposure, see general note 6

NON-PLANTED SOFTSCAPE CROSS SECTION

NOTES
Ase softscape materials allowed by jurisdiction.
. Loded softscape materials:
Loose, durable round rock $2^{\prime \prime}-4$ in diameter
b) Lava rock $2^{\prime \prime}-4$ "diameter
c) Wood
3. No crushed aggregate or pea gravel allowed.
4. Install softscape material flush with the top of sidewalk.

LEGEND

Sidewalk pay limit.
Driveway pay limit, varies by option
$\leftrightarrow \quad$ Cross slope 1.5% max
(Max. 2.0\% finished surface slope

General notes for all detalls on this sheet:

1. Details are based on applicable ODOT Standards.
2. Only use details allowed by jurisdiction.
3. The following dimensions are as shown on plans, or as directed: driveway width, driveway slope, sidewalk width, curb exposure, driveway lip exposure, landing area length and width. See project plans for details not shown.
4. Curb, gutter, and sidewalk types varies, see plans.
See Std. Dwgs. RD700 \& RD701 for curb details. See Std. Dwg. RD720 for sidewalk details
See Std. Dwg. RD722 for joint details.
5. A greater than or equal 4 ' unobstructed clear passage with cross slope 1.5% max. (Max. 2.0% finished surface slope) is required behind driveway apron.
6. Where existing driveway is in good condition, and meets slope requirements, construct only as much landing area as required for satisfactory connection with new work.
7. Check the gutter flow depth at driveway locations to assure that the design flood does not overtop the back of sidewalk at driveway
If overtopping occurs place an inlet at upstream side of driveway or perform other approved design mitigation.
8. Construct a full deph expansion joints with $1 \# 2$ " (In) preformed joint filler at ends of each driveway.
Construct a aul deph expansion joints with $1 \# 2$ " ((n) prefor
Tooled joints are required at all driveway slope break lines.
9. 15 ' min. of the driveway behind the sidewalk should be surfaced to prevent tracking of gravel onto the sidewalk.
10. Monolithic curb \& sidewalk shall retain thickened edge through lowered profile, to accommodate driveway use. See Std. Dwg. RD720 for details.
11. Any dimensions except those of general note 5 may be amended by local agencies for their use

lEGEND.

必
Driveway pay limit (If monolithic, include adjacent curb)
(See project plans for details not she (details not shown)
$\leftrightarrow \quad \begin{gathered}\text { Cross slope } \\ \text { (Max. 2.0\% finished surface slope) }\end{gathered}$
W Width of driveway
E Curb exposure

NOTE:

This drawing is to be used by local agencies to assist
them in the design of driveways on their facilities.

LeGend:
Marked or intended crossing traversable locationSidewalk or other traversable surface
曾:
Level area (Turning space/landing)
$\circledast \quad$ Cross slope 1.5% max Mar. (Nal sidewalk cross sle slope)
<< Running slope.
$\leftarrow \quad$ Running slope 7.5% max
(Max. 8.3% finished surface slope)
$\Leftarrow \quad$ Counter slope 4.0% max. ascending or descending (Max. 5.0\% finished surface slope)
$\triangleleft \quad$ Flare slope

「
1

$4^{\prime} \times 4^{\prime}$ clear space
RR1 Ramp Run Position

TYPICAL CURB RAMP SYSTEM COMPONENTS (PERPENDICULAR TYPE SHOWN)

See Std Dwas．RD700 \＆RD701 for curbs．
See Std．Dwg．RD902 for detectable warning surface installation details．

PARALLEL CURB RAMP

PERPENDICULAR CURB RAMP GRADE BREAK IN FRONT OF CURB

RAISED CROSSING，TRUCK APRON OR PROTECTED BIKE FACILITY

LEGEND： ты＂

Marked or intended crossing location
\square Sidewa
幾曲曲 Detectable warning surface
$\leftrightarrow \quad$ Cross slope 1.5% max．
Max．2．0\％finished surface slope）
（Normal sidewalk cross slope）
$\leftarrow \quad$ Running slope 7.5% max
（Max． 8.3% finished surface slope）

SHARED－USE PATH CONNECTION

CALC．Book no．＿＿＿＿N／A	SDR DATE＿＿－－＿＿＿20－JULY－2020＿＿＿＿	
The selection and use of this Standard Drawing，while de－ signed in accordance with generally accepted engineer－ ing principles and practices， is the sole responsibility of the user and should not be used without consulting a Registered Professional En－ gineer．	NOTE：	All material and workmanship shall be in accordance with
	OREGON STANDARD DRAWINGS DETECTABLE WARNING SURFACE PLACEMENT FOR CURB RAMPS	
	－DATE	ORAWNC Createo ${ }_{\text {REVSION }}$
		drawnc create

SECTION ABA

1. Curb ramp details are based on applicable ODOT Standards.

See project plans for details not shown.
See Std. Dwgs. RD 700 \& RD701 for curbs.
See Std. Dwgs. RD720 \& RD721 for sidewalks.
See Std. Digs. RD902 through RD908 for detectable warning surface installation details. 3. Site conditions normally require a project specific design. See project plans for details not shown.
4. Tooled dummy joints are required at all curb ramp slope break lines, (see Std. Dwg. RD722).
5. Curb ramp slopes shown are relative to the true level horizon (zero bubble)
6. Place detectable warning surface at the back of curb for a minimum depth of 2
7. Place an inlet at upstream side of curb ramp or perform other approved design mitigation.
. Place an inlet at upstream side of curb ramp or perform other approved design mitigation.
Check the gutter flow depth at curb ramp locations to assure that the design flood does not
overtop the back of sidewalk.
landscaping. Return curb shall not reduce width of approaching sidewalk.
landscaping. Return curb shall not reduce width of approaching sidewalk.
9. Curb ramps for shared use paths intersecting a roadway shall be full width of path, excluding
flares. When a curb ramp is used to provide bicycle access from a roadway to a sidewalk, the
curb ramp opening will be $\geq 8^{\prime}$ wide.
10. When 2 curb ramps are immediately adjacent, the curb exposure (E) between the adjacent side

1. On or along state highways, curb and design exposure.
2. Grade breaks at the top and bottom of curb ramp runs shall be perpendicular to the direction of the ramp run. Grade breaks shall not be permitted on the surface of ramp runs and turning spaces. Surface slopes that meet at grade breaks shall be flush

LeGend:

Marked or intended crossing location
\square Sidewalk

Detectable warning surface
Level area (Turning space/ landing)
Unobstructed $4.5^{\prime} \times 4.5^{\prime}$
With obstruction $4.5^{\prime} \times 5.5^{\prime}$ (Longer dimension in direction of pedestrian
street crossing). drainage) measured perpendicular in two directions is considered level.
Cross slope 1.5% max
(Max. 2.0\% finished surface slope)
Normal sidewalk cross slope)
$\leftarrow \quad$ Running slope 7.5% max
(Max. 8.3% finished surface slope)
$\Leftarrow \quad$ Counter slope 4.0% max. ascending or descending, Slope as required for drainage
$\Delta \quad \begin{gathered}\text { Flare slope } \\ \text { (Max. 10\% finished surface slope) }\end{gathered}$

COMBINATION CURB RAMP DETAIL

GENERAL NOTES FOR ALL DETAILS ON THIS SHEET:
Curb ramp details are based on applicable ODOT applicable Standards.
2. See project plans for details not shown.

See Std. Dwgs. RD700 \& RD701 for curbs.
See Std. Dwgs. RD720 \& RD721 for sidew
See Std. Dwgs. RD720 \& RD721 for sidewalks.
See Std. Dwg. RD722 for transition panel details.
 See Std. Dwgs. RD902 through RD008 for detectable
See Std. Dwg. RD920 for parallel curb ramp details.
3. Site conditions normally require a project special design. See project plans for details not shown 4. Tooled dummy joints are required at all curb ramp grade break lines, (see Std. Dwg. RD722).
5. Curb ramp slopes shown are relative to the true level horizon (zero bubble).
6. Place detectable warning surface at the back of curb for a minimum depth of 2 ' in the direction of pedestrian travel full width of curb ramp opening that is adjacent to traffic.
Place an inlet at upstream side of curb ramp or perform other approved design mitigation.
Check the gutter flow depth at curb ramp locations to assure that the design flood does no Check the guter fow dept
overtop the back of sidewalk.
. When a shared use path terminates, the curb ramp shall be the full width of the path, the turning . . Grade breaks at the top and bottom of curb ramp runs shall be perpendicular to the direction
of the ramp run. Grade breaks shall not be permitted on the surface of ramp runs and turning of the ramp run. Grade breaks shall not be permitted on the surface of ramp runs and turning
spaces. Surface slopes that meet at grade breaks shall be flush.
0. On or along state highways, curb and gutter is required at curb ramps.
. Unique curb ramp option can be used for curved or tangent roadway sections. Superelevated roadways require a site specific detail
LEGEND:

\square Sidewalk
 Transition panel

Detectable warning surface
Level area (Turning space/landing)
Unobstructed $4.5^{\prime} \times 4.5^{\prime} 5^{\prime}$. (Longer dimension in direction of pedestrian
With obstruction $4.5^{\prime} \times 5.5^{\prime}$ (street crossing). drainage) measured perpendicular in two directions is considered level.
$\hookleftarrow \quad$ Cross slope 1.5% max.
(Max. 2.0\% finished surface slope)
(Normal sidewalk cross slope)
$\leftarrow \quad \begin{aligned} & \text { Running slope } 7.5 \% \text { max. } \\ & \text { (Max. } 8.3 \% \text { finished surface slope) }\end{aligned}$
$\Leftarrow \quad$ Counter slope 4.0% max. ascending or descending (Max. 5.0\% finished surface slope)
Slope as required for drainage
New construction sidewalk width. See contract plans for dimension
caic book

The selection and use of this Standard Drawing, while de-
signed in accordance with generally accepted engineer ing principles and practices, is the sole responsibility of the user and should not be used without consulting a Registered Professional Engineer.

GEOTEXTILE/WIRE MESH/AGGREGATE - TYPE 2
Not to scale

PREFABRICATED FILTER INSERT - TYPE 3 NOT TO SCALE

NOTE:
Istall sod around the perimeter
harvest of the sod

SOD PROTECTION - TYPE 6 not to scale
 AREA DRAIN PLAN

CURB INLET PERSPECTIVE VIEW
COMPOST FILTER SOCK OR WATTLE - TYPE 7
NOT TO SCALE

CURB INLET SEDIMENT DAM - TYPE 10 not to scale

Type 2-Geotextile/wire mesh/aggregate Place the wire mesh over the grate.
Place sediment fence geotextile over Place sediment fence geotextile over the
wire mesh and perimeter area around structure.
Install aggregate over the geotextile fabric
Type 3 - Prefabricated filter inserts Instal/ prefabricated filter inserts according to the plans, special provisions, and
manufacturer recommendations. Prefabricated inserts with provisions for overflow are allowed only when accompanied by additional BMP's to
prevent the potential of sediments prevent the potential of sediments
entering project storm systems. Field fabricated inserts are not allowed.

Type 7-Compost filter sock
Drive 2"x $^{\prime \prime}$ " wood stakes a minimum of

Overlap ends of sock per manufacturers recommendations (12"Min., 36" max.).
Use $8^{\prime \prime}$ to $12^{\prime \prime}$ dia sock on urbside
Use 8"to 12" dia sock on curbside in traffic

to 18 " dia sock in non-traffic area where the larger socks can be fely. thetic mesh socks for temporary
Type 10 - Curb inlet sediment dam Fit curb inlet sediment dam snugly into in mouth. Curb inlet sediment dam is required for use with inlet filter insert where at-grade inlet grate and curb inlet are combined at a catch basin.
Type 11 - Wattle barrier with filter insert Install prefabricated filter insert per Type 3 detail. Install wattles over opening and $36^{\prime \prime}$ to each side of opening tight against curb. Adjust wattle to force storm water to flow through filter insert or wattle prior to leaving the site. Adjust, replace or modify the inlet protection as needed to prevent sediment laden water from entering the catch basin.

Type 7 cont.)
Lse $12^{\prime \prime}$ to $18^{\prime \prime}$
.
Use 12 "to 18 " dia sock in non-traffic areas
or areas where the
or areas where the larger socks can be
used safely. use synthetic
installations.

Type 10 - Curb inlet sediment dam
fit curb inler mourh. Curb sedimet sent dament snugly into
mant in
required for use with inet titer in required for use with inlet filter insert
where at-grade inlet grate and curb inlet are combined at a catch basin.
Type 11 - Wattle barrier with filter insert detail.
Install
wa side of opening tight against curb. Adjust wattle to force storm water to flow through
site.
Adjust, replace or modify the inlet protection as needed to prevent sedime
from entering the catch basin.

STACKED LEGEND FOR STREET NAME SIGN (GROUND-MOUNTED)

STACKED LEGEND FOR STREET NAME SIGN (MAST ARM MOUNTED)
Notes: If 12 "C font on mast arm mounted sign vields signs larger than 21 square feet, the 10 " Alternate may be used.
White border and legend on mast-arm signs are to be
ASTM Type IX retroreflective sheeting. Borders shall be lush with edge of sign. Dividers, where used, shall be same width as border
ew Projects: Include mast-arm signs on Signing Plans. Existing Polos: Perform pole analysis prior to adding
STREET NAME SIGN DETAILS

FRACTIONAL LAYOUT

SERIES (FONT)
S. .531 H .625 H .836 H 1.00 H

SPACING BETWEEN WORDS
$\mathrm{H}=$ Letter Height $W, X, Y \& Z=1 / 2$ of remaining space
X-Dimension should be approximately the same dimension as the letter Height (H). At a minimum the X-Dimension shaight $(1 / 2 \mathrm{H})$ than one-half the letter
Sign examples shown here are not drawn to scale, but to illustrate the layout of the legend items.

Highway

$$
H \times F \quad=S F=H F X F
$$

$$
\text { Lebanon } \quad 12
$$

$$
\text { Sweet Home } 25
$$

$$
\text { Bend } \quad-\mathrm{H}
$$

$=|x|$
DIRECTIONAL SIGN DETAILS

plotfile_TM200s_500s.dgn : : Defoult 7/10/2020 8:51:31 AM
nwyr20m

Effective Date: December 1, 2020 - May 31, 2021

SECTION B-B

JUNCTION BOX INSTALLATION IN UNSURFACED AREA (This Detail Only Applicable for Junction Boxes
cated In Incidental Pravel Areas:Cravel Shoulders, Behaied Cuardrail, Etc. Do Not Install In Travel Lanes,
Paved Shoulders. Or Other Areas Exposed To Traffic.)

GENERAL NOTES:

1. Install Top of Junction Box And Hand Hole Flush With The Sidewalk, Surrounding Grade, Or Top Of Curb. For Hand Holes Installed In The Roadway Or Shoulder, Leave The Top Of The Hand Hole $1 / 2^{\prime \prime}$ Below The Pavement Surface.
2. Install Junction Boxes And Hand Holes At The Approximate Locations Shown, Or If Not Shown, No More Than 300 Feet Apart For Junction Boxes And No More Than 1000 Feet Apart For Hand Holes.
3. Use Materials According . Use Materials According To 00640.10 and 00640.16 . Use Compaction Equipment Suitable For Area And Compact Each Six Inch Layer With Sufficient Coverages To Produce A Firm Unyielding Surface. Do Not Install Conductors Until Surface Has Been Constructed.

DELINEATION OF JUNCTION BOX \& HAND HOLE IN UNSURFACED AREA
Cover To Be Marked "SICNALS",
(Letter Height ${ }^{\text {r"Min.) }}$
Use Two Stainless
Steel / Brass "L" Bolts
Or Hex Head Boots
To Secure Cover

FIBER OPTIC CABLE HAND HOLE INSTALLATION

Effective Date: December 1, 2020 - May 31, 2021

Effective Date: December 01, 2020 - May 31, 2021

LANE USE ARROW PLACEMENT FOR TURN LANE DETAIL "A"

TWO-WAY LEFT TURN LANE ARROW PLACEMENT DETAIL "B"

* 15^{\prime} when installing elongated arrows

```
General Notes:
1) Center pavement marking legends within the lane
2) Placement of lane use arrows with respect to the
    8" wide "White line (W-2) channelization shown in
3) Center "ONLY" markings between lane use arrows.
```

* When L is greater than 400 ', install 3rd lane use
arrow at $1 / 2 \mathrm{~L}$ as shown in Detail " A ".

To be accompanied by Standard Dwg. Nos. TM500 thru TM504

CALC. Book no. _ _ N/A _ _ _ - - -	SDR DAT	TE
The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without consulting a Registered Professional Engineer.	NOTE:	All material and workmanship shall be in accordance with the current Oregon Standard Specifications.
	OREGON STANDARD DRAWINGS TURN ARROW MARKING DETAILS	
	2021	
	${ }_{\text {OATE }}^{\text {O7/2020 E }}$	Extended accompaniied by drawingion to include TM504

MEDIAN BULLNOSE DETAIL

MEDIAN WIDTH TRANSITION
(TWO NARROW DOUBLE YELLOW LINES TO ONE-DIRECTION NO-PASSING LINE)

LEGEND

left to right
\leadsto Direction of Travel
${ }^{4-}$ Lane line dimensions are shown on the striping plans

CALC. Book no. _ _ N/A	SDR DATE	TE - -07101/2020_
The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without consulting a Registered Professional Engineer.	NOTE: ${ }_{\text {a }}^{\text {All }}$	All material and workmanship shall be in accordance with the current Oregon Standard Specifications.
	OREGON STANDARD DRAWINGS MEDIAN AND LEFT TURN CHANNELIZATION DETAILS 2021	
	DATE ${ }^{\text {D }}$	

General note:
1.) Use control points to make continous narrow guideline as specified

* Control points are placed along the lane line for all longitudinal lines except the following (ND)	For center
lines only	\(\begin{aligned} \& A control point layout 4" offset from the lane line is required

\& for a ND line when used as a center line.\end{aligned}\)

To be accompanied by Standard Dwg. Nos. TM500 thru TM504

CALC. Book no. _ _ N/A	SDR DA	TE - 07/01/2020
The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without consulting a Registered Professional Engineer.	NOTE:	All material and workmanship shall be in accordance with the current Oregon Standard Specifications
	OREGON STANDARD DRAWINGS	
	ALIGNMENT LAYOUT: GENERAL	
	2021	
	07/2020	Extended accompanied by dravings to include TM504

Foundation Number	$\begin{gathered} \text { Mastarm } \\ \text { Pole } \\ \text { Types } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { "FD" } \\ \text { Diameter } \\ \text { Min. } \end{array}$	$\begin{aligned} & \text { Vertical } \\ & \text { Rebar } \end{aligned}$	$\begin{gathered} \text { Hoop } \\ \text { size and } \\ \text { Spacing } \end{gathered}$	$\begin{aligned} & \text { Hoop } \\ & \text { Lap } \\ & \text { Length } \end{aligned}$
1	SM	$36^{\prime \prime}$	-\#8	\#4 at 6	$18^{\prime \prime}$
2	SM2, SMIL	$36^{\prime \prime}$	8-\#8	\#4 at $6^{\prime \prime}$	$18^{\prime \prime}$
3	SM3, SM2L	36"	8-\#8	4 a	$18^{\prime \prime}$
4	SM4, SM3L	$42^{\prime \prime}$	10-\#8	*5 at 6"	$21^{\prime \prime}$
5	SM5, SM4L	$42^{\prime \prime}$	10-18	\#5 at 6"	$21^{\prime \prime}$
6	SM5L	$42^{\prime \prime}$	10-\#	\#5 at 6"	21

$\frac{\text { PROJECTION DETAIL }}{\text { No Scale }}$

$\frac{\text { TYPICAL FOOTING ELEVATION }}{\text { No Scale }}$

$\frac{\text { ROCK INSTALLATION REQUIREMENTS }}{\text { No Scale }}$ 8 - Anchor Rods, see A
Rod detail on TM652.
Anchor plate, see Anchor Plate
Anchor plate, see Anchor Plate
and template detail on TM652.
$\frac{\text { ELEVATION - TOP OF FOOTING }}{\text { No Scale }}$

$\underline{\underline{\text { PLAN - TOP OF FOOTING }}}$

NOTES:

See TM651 for general notes.
The pier torsional forces have been designed
according to the ACI 318 .

MINIMUM EMBANKMENT REQUIREMENTS

NOTES

1. The wind velocity map as shown is adapted from AASHTO 2001 4th Edition "Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals", Appendix C, Figure C-3 and Section 3, Figure 3-2. It uses
the wind speed map shown in Figure 1609 of the 2007 Oreion Structural Code the wind speed map shown in Figure 1609 of the 2007 Oregon Structural Code The wind velocities shown above are 3 -Second Cust wind velocities.
2. The Exposure Catagory is C.
3. Mountanious terrain, gorges, and ocean promontories are classified as
special wind regions and shall be examined for unusual wind conditions.
4. The Interval Height ($K z$) is 30
5. Areas in Multnomah and Hood cean winds shall be designated 110 mph areas. 8iver Corge winds shall be designated llo mph arell exposure to Columbia
6. Localities may have adopted wind speed higher that shown on this map. Those higher wind speed shall be used.

Note:
1)When signs are placed on opposing sides
of post ${ }^{3 / \prime \prime}{ }^{\prime \prime}$ 3" $^{\prime \prime}$ lag screws can be used of post, $3 / s^{* x} \times 3^{\prime \prime}$ lag screws opan be used
instead of throug bolt instead of through bolt.
2) Use nylon and stainles
a
signs are placed on both sides of pors when 3) Burr threads at junction with nut.
when locknuts are not used.
when locknuts are not used.
4) Post bolts to extend beyond the tightened
nuts within the limits of $/_{4}$ " to I"

Stainless steel bonded sealing washer with neoprene layer is an acceptable substitue
** Acceptable substitute
for nylon locking nuts.
ANCO PIN-LOC
TRI-LOC* Top Lock Locknut

SIGN ATTACHMENT DETAIL

Stainless steel bonded sealing washer with neoprene layer is an acceptable substitue Note: This optional detail is to be used
only when specified on a project. OPTIONAL WOOD POST LAG SCREW DETAIL

Calc. book no.	SDR DATE. . _ 10-JUL-2020	
The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without consulting a Registered Professional Engineer.	NOTE:	All material and workmanship shall be in accordance with the current Oregon Standard Specifications
	OREGON STANDARD DRAWINGS	
	SIGN ATTACHMENTS	
	2021	
	DATE $07 / 20$	Added optional lag screw dieail.

Effective Date: December 1, 2020 - May 31, 2021

TAPER TYPES \& FORMULAS	
TAPER	FORMULA
Merging (Lane Closure)	"L"
Shifting	$\mathrm{LL"} / 2$ or $1 / 2 \mathrm{LL}$
Shoulder Closure	"L"/3 or $1 / 3 \mathrm{LL}$
Flagging (See Drg. TM850)	$50^{\prime}-100^{\prime}$
Downstream (Termination)	Varies (See Drawings)

* Use Pre-Construction Posted Speed to select

TEMPORARY BARRIER FLARE RATE TABLE	
\star SPEED (mph)	MINIMUM FLARE RATE
≤ 30	$8: 1$
35	$9: 1$
40	10.1
45	$12: 1$
50	$14: 1$
55	$16: 1$
60	$18: 1$
65	$9: 1$
70	$20: 1$

NOTES:

- For Lane closures where $W<10^{\prime}$, use "L" value for $W=10$.

For Shoulder closures where $\mathrm{W}<110$ ', use "L" value for $\mathrm{W}=10^{\prime}$ or calculate "L" using
formula, for S peeds $\geq 45: \mathrm{L}=\mathrm{WS}$, speeds $<45: \mathrm{L}=\mathrm{S}^{2} \mathrm{~W} / 60, \mathrm{~S}=$ Speed, $\mathrm{W}=\mathrm{Width}$

TRAFFIC CONTROL DEVICES (TCD) SPACING TABLE				
\star SPEED (mph)	Sign Spacing (ft)			Max. Channelizing Device Spacing (ft)
	A	B	C	20
$20-30$	100	100	100	20
$35-40$	350	350	350	40
$45-55$	500	500	500	40
$60-70$	700	700	700	40
Freeway	1000	1500	2640	4

NOTES:

- Place traffic control devices on 10 ft . spacing for intersection and access rad
- When necessary. sign spacing may be adjusted to fit site conditions. When necessary, sign spacing may be adjusted to fit site conditions.
Limit spacing adjustments to 30% of the "A" dimension for all speeds.
notes
- When paved shoulders adjacent to excavations are less than
four feet wide protect longitudinal abrupt edge as shown.
- Use aggregate wedge when abrupt edge is 2 inches or greater

Extg. pavement

NOTES:

- Install PCMS beyond the outside shoulder, when possible.
- Use the appropriate type of barricade panels for PCMS location

- Use six drums in shoulder taper on 20 s spacing. The drums and
- Detail as shown is used for trailered and non-crashworthy components of - Smart Work Zone Systems

PORTABLE CHANGEABLE MESSAGE
SIGN (PCMS) INSTALLATION

NOTES:

- Install Flagger Station Lighting beyond th
- Use six tubular markers in shoulder tape

Place cart / generator / power supply off of the
shoulder, as far as practical.

FLAGGER STATION LIGHTING DELINEATION

NOTES

- Abrupt edges may be created by paving, operations, excavations or other roadway work. Use abrup
abrupt edges of 1 inch or greater.
- If the excavation is located on left side of traffic, replace th 8^{\prime} ' $B(I I) R$ barricades with 8^{8} B(III) barricades and replace . "RICHT" (CW21-8C) riders with "LEFT" (CW21-8A) riders.
- Continue signing and other traffic control devices
- If roll-up signs are used, attach the correct (CW21-9) plaques so tone sign faceu using hook and loop
place roll-up signs in advance of barricades.

eneral notes for all tcp drawincs:
- Signs and other Traffic Control Devices (TCD)
- Place a barricade approx 20^{\prime} ahead of al

Arrows shown in roadway are directional arrow

- Arrows shown in roadway are
to indicate traffic movements.
- All signs are $48^{\prime \prime} \times 48$ " unless otherwise shown. Use flourescent orange sheeting for the
background of all temporary warning signs.
- . Temp. Plastic Drums See TCD Spacing
for max. spacing.
- - ${ }^{28 \text { " Tubular Markers }}$ See TCD Spacing Table
for max. spacing.

VIIIII under construction

- All diamond shaped warning signs mounted on barrier sign supports shall be be 36 by $36 "$ ".
All other signs mounted on barrier sign supports shall not exceed 12 sq. ft. in total sign area.

Low speed highways have a pre-construction posted speed of 40 mph or less.
High speed highways have a pre-construction posted speed of 45 mph or higher.

- Do not locate sign supports in locations designated for bicycle or pedestrian traffic

Combine drawing details to complete temporary traffic control for each work activity.

- To be accompanied by Dwg. Nos. TM820 \& TM821

Effective Date: December 1, 2020 - May 31, 2021
SIGN POST REFLECTIVE SHEETING PLACEMENT

TEMPORARY SIGN SUPPORT GENERAL NOTES:

- Do not tip over TSS at any time.
- Do not locate TSS's in locations that block pedestrian or bicycle traffic,
- For wooden TSS's, use either Douglas Fir or Hem Fir, which is surfaced
four sides (545) and free of heart center (FOHC).
- See "Temporary Sign Placement" detail on TM822 for sign installation heights.
- Do not place or stack ballast more than $24^{\prime \prime}$ above the ground.
- When sign is inconsistent with current work zone conditions, cover sign: or tur sign 90 degrees away from approaching traftic. Remove TSS from roadway
when signing is not needed for more than 3 days.
- Place a minimum of 50 lbs of sandbags on each of the four TSS supports legs.
- See Dwg. No. TM204 for flag board mounting detail

NOTES:

- Do not block bicycle lanes, sidewalks, or TPAR's with sign supports. Maintain minimum widths for these facilities
- To be accompanied by Dwg. Nos. TM670, TM671, TM687, TM688 \& TM689.

Urban Areas With Curb/Sidewalk

Rural Areas

notes:

- Drill additional holes so sign can be rotated 90 degrees
and pinned when not in use.

All structural steel shall conform to ASTM A36.

- Support fits both 32 " and 42 " tall "F" barrier.

Use for supporting a maximum 12 sq . ft. of total sign area

- Place support at connection between two concrete barrier sections.

Weld steel according to American Welding Society (AWS) D.1.1.
Do not use clipped signs.

- Follow manufacturer recommendation when installing signs on barrier

CONCRETE BARRIER SIGN SUPPORT

Divided Highway/Freeway Medians No Curb/Sidewalk

Where temporary signs are located Where temporary signs are located
adjacent to or intrude into a paved adjacent to or intrued into a paved
shoulder or other surface used by bicycle traffic, install secondary sig minimum of $7^{\prime} 0$ " above pave surface, as shown. pavement

Effective Date: December 1, 2020 - May 31, 2021

Effective Date: December 1, 2020 - May 31, 2021

Effective Date: December 1, 2020 - May 31, 2021

ROADSIDE DEVELOPMENT

TYPICAL DETAILS
general planting notes：
＊Ensure That Trees Are Planted Beyond The＂Clear Zone＂．Verify with The Engineer Prior To Planting．
＊Adjust Planting Locations So That Vegetation Doesn＇t Conflict with Above－Or Below－ground utilities．
＊Locote Underground Utility Lines Prior To Digging Tree Holes．
＊Adjust Plant Locations To Avoid Conflict With Troffic Sight Lines And Signs Or Other Appurtenances．
＊See＇American Standard For Nursery Stock＇For Plont Quality Minimum Standard
＊All Dimensions Shown on Details Are Minimum Dimensions．
＊See Plant List Or Special Provisions For Plant Material That May
Need To Be Wild－Collected Oi Controct－Grown．

TREE PLANTING
（All Forms Except Boreroot）
tree staking notes：
Furnish Tree Stokes On All Tree Plontings．Stakes To Be Construction Grade．Rough Sown Or Finished Douglas Fir
Or Pine．Stoin With An Approved Green Penetrating Oil．Stake Size Is To Be $11 /{ }^{\prime 2} \times 1^{11 / 2 " ~ B y ~ T h e ~ F o l l o w i n g ~ L e n g t h s: ~}$
－Trees 36＂And Shorter－Use One－6＇（Approx．）Stoke．
－Trees Taller Than 36＂1－Use Two－8＇（Approx）Stakes．
Drive Stokes Vertically And At Leost 12＂Into Undisturbed Soil．Do Not Drive Stokes Thru Root Ball．Locate
Stokes To Best Resist Prevoiling Winds Where Possible．

ree Ties To Be Either：

－Plostic Chain Type．Approximately 1 ＂Width By $1 / s^{\prime \prime}$ Depth．Where Two Stokes Are Required．Cross The Ties
－
－Rigid Guy System As Manufactured By Alpine Nursery．Boring，Oregon．The Galvanized Wire Is To Be Approximately

TREE STAKING DETAIL
（Allforms Except Boreroot）

The selection and use of this detail， while designed in accordance with generally accepted engineering	OREGON DEPARTMENT OF TRANSPORTATION TECHNICAL SERVICES DETAILS	
principles and practices，is the sole		DETAILNo．
responsibility of the user and should	TREE PLANTING AND	
not be used without consulting a	STAKING DETAILS	DET6100

ROADSIDE DEVELOPMENT

PLANTING DETAILS

STYRO-BLOC PLUG PLANTING

SLOPED AREA SHRUB PLANTING

GROUNDCOVER PLANTING

PROPAGULE PLANTING

Note:

See "American Standard For Nursery Stock" For Plant Quality
Minimum Stondords Such As Size of Root Boll or Caliper of Trunk.
All Dimensions Shown on Details Are Minimum Dimensions.
See Plant List Or Special Provisions For Plant Material That May
Meed To Be Wild-Collected Or Controct-Grown.

The selection and use of this detail, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without consulting a	75 OREGON DEPARTMENT OF TRANSPORTATION	
	PLANTING DETAILS	detall no.
		DET6102

